Выпрямитель для больших токов при малых потерях

Выпрямитель для больших токов при малых потерях

Описываемый необычный выпрямитель переменного тока предназначен для использования там, где требуются малые регулируемые напряжения при относительно больших токах и малых потерях. Примером применения может служить питание элементов Пелтье, применяемых в системах охлаждения, где, к тому же, необходимо и регулировать температуру. Гальванические ванны и низковольтные паяльники - другие примеры применения подобного выпрямителя.

При получении низких напряжений питания в выпрямителях встает проблема падения напряжения на выпрямительных полупроводниковых диодах, обусловленная примененным в диодах полупроводниковым материалом (0,6…0,9 В в кремниевых диодах), которое оказывает тем большее влияние, чем ниже выпрямленное напряжение. Встает проблема отвода тепла при больших токах нагрузки. Когда необходима еще и регулировка выходного напряжения, прибегают к помощи последовательного стабилизатора напряжения, падение напряжения на переходе регулирующего транзистора которого составляет дополнительно к падению на диодах выпрямителя еще несколько вольт, что ведет к бесполезному рассеиванию мощности, к.п.д устройства, при этом, не превышает 50%. На рисунке (Bild 1) показана схема выпрямителя, взятая из сборника патентов ГДР [ 1 ], который позволяет значительно уменьшить потери мощности.


Рис. 1.

Речь идет, в первую очередь, о двухполупериодном выпрямителе со средней точкой, который характерен и известен как выпрямитель, имеющий два диода и отвод от середины обмотки трансформатора. Здесь выпрямительные диоды заменены переходами эмиттер-коллектор регулирующих транзисторов (VT1 и VT2). Этим обеспечивается преимущество перед диодами, так как падение напряжения на переходах эмиттер-коллектор у современных мощных планарных транзисторов составляет всего 0,1…0,2 В, против примерно 0,7 В у большинства выпрямительных диодов, поэтому бесполезное рассеивание мощности значимтельно сокращается. Кроме того, при использовании транзисторов как управляемых элементов, появляется возможность регулировки выходного выпрямленного напряжения, а, именно, - путем усечения фазы.

Рис. 2

Во время положительного полупериода ток течет через VD1, контакты переключателя S (S - сначала в крайнем правом, по схеме, положении), резистор R и диод VD4 в цепи база-эмиттер VT2. VT2, при этом, управляется, в результате чего нижняя ветвь выпрямителя открывается, а конденсатор С заряжается. Во время отрицательного полупериода транзистор VT1 управляется через диод VD2, S, R и VD3, чем открывается верхняя ветвь выпрямителя. Поскольку речь идет о двухполупериодном выпрямителе, в котором остаточное падение напряжения на переходах эмиттер-коллектор транзисторов очень мало, то мала и рассеиваемая на транзисторах мощность, равная падению напряжения на переходе эмиттер-коллектор умноженному на ток протекающий в этой цепи. Коль мала мощность рассеивания, так небольшим может быть и теплоотвод, а если еще и отрицательный полюс выпрямителя может быть соединен с металлическим корпусом питаемого устройства, то регулирующие транзисторы можно прикрутить выводами коллекторов прямо на шасси без изолирующих прокладок.

Теперь рассмотрим возможность регулировки выходного напряжения выпрямителя с помощью цепочки диодов VD5…VDn, коммутируемых переключателем S, осуществляющих отсечку фазы (Bild 2). Транзисторы, при этом, начинают проводить не сразу с начала соответствующего полупериода переменного напряжения, а спустя некоторое время, когда мгновенное значение амплитуды напряжения в полупериоде превысит сумму прямых напряжений включенных диодов. Соответственно, чем меньшее время открыты транзисторы, тем до меньшего напряжения сможет зарядиться конденсатор фильтра С. Конечно эффект более позднего открывания и более раннего закрывания транзисторов зависит и от прямого падения напряжения на диодах VD1…VD4 и от напряжения открывания транзисторов VT1 и VT2. Здесь лучше всего применить германиевые диоды из-за малого прямого падения напряжения на них, например, 0,1 А или 1 А диоды из серии GY. Более современными оказываются здесь диоды с барьером Шоттки, но результаты, получаемые с ними ничуть не лучше, а хуже, чем со старыми добрыми германиевыми диодами, тем более, что до сих пор не все могут диоды Шоттки достать.

Следует обратить особое внимание на максимальное допустимое обратное напряжение переходов база-эмиттер VT1 и VT2. При превышении этого напряжения, ток с соответствующего внешнего конца вторичной обмотки силового трансформатора потечет через запертый переход эмиттер-база (как ток стабилизации (или "лавинный ток пробоя") в стабилитроне) и оттуда через включенный в прямом направлении прохождения тока переход база - коллектор, - прямо на выход выпрямителя. В этом случае, конечно же, ни о каком регулировании транзисторами не может быть и речи и они повреждаются. Пиковое значение напряжения на любой половине вторичной обмотки не должно превышать допустимого обратного напряжения перехода эмиттер-база (Ueff * 3 2), которое должно быть в пределах 6…9 В.

Рекомендуется до установки транзисторов в схему измерить допустимое обратное напряжение переходов база-эмиттер (и, наверное, коль схема симметрична, подобрать пару транзисторов с одинаковыми параметрами). Способ измерения этого напряжения прост: необходимо включить переход база - эмиттер в обратном (запирающем направлении прохождению постоянного тока) через резистор и измерить на переходе напряжение точно также как определяется напряжение стабилизации на обычном стабилитроне. Увеличиваем напряжение подаваемое на последовательно включенные резистор (например, сопротивлением 1 ком) и переход база-эмиттер ("плюсом" к эмиттеру, если это n-p-n транзистор), на параллельно переходу включенном вольтметре наблюдаем значение максимального обратного напряжения, когда таковое перестает заметно прирастать при увеличении напряжения питания. Последнее обстоятельство (довольно низкое допустимое обратное напряжение перехода база-эмиттер) ограничивает максимальное выходное напряжение приводимой схемы выпрямителя 5 вольтами. Величина сопротивления R = 200 ом выбрана как компромисс для выходного напряжения до 5 В при токах нагрузки 1…2 А: слишком малая его величина ведет к излишним потерям в самом резисторе (неэкономична), большая же, - не позволяет полностью открываться транзисторам, из-за чего также увеличиваются потери (теперь на регулирующих транзисторах).

Транзисторы должны иметь как можно большее допустимое обратное напряжение перехода база-эмиттер и обладать максимально возможным коэффициентом усиления по току. Если будут применяться p-n-p транзисторы (например, КТ818), все диоды и оксидный фильтровый конденсатор следует "перевернуть" и полярность выходного напряжения сменится.

Можно пойти дальше и вместо дискретной регулировки выходного напряжения применить плавную, установив вместо диодов VD5…VDn и переключателя S, той же проводимости как VT1/VT2 (коллектором к точке соединения диодов VD1 и VD2, эмиттером к резистору R) и потенциометр, вывод движка которого следует соединить с базой дополнительного транзистора, а крайние выводы - с коллектором и эмиттером этого транзистора. Возможны также другие включения с падающей характеристикой (аналог динистора). Для экспериментатора здесь большое поле деятельности.

Литература

Патент DDR-WP HO2 313189.7

Dipl.-Ing. M. Franke

FUNKAMATEUR 1988, № 11, стр. 554.

Перевод: Виктор Беседин (UA9LAQ) Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript , г. Тюмень; Публикация:






Рекомендуемый контент




Copyright © 2010-2017 housea.ru. Контакты: info@housea.ru При использовании материалов веб-сайта Домашнее Радио, гиперссылка на источник обязательна.