Журнал Радио 2 номер 1998 год. ЗВУКОТЕХНИКА

Журнал Радио 2 номер 1998 год. ЗВУКОТЕХНИКА О ПРИНЦИПАХ РАБОТЫ ШУМОПОДАВИТЕЛЕЙ С. АГЕЕВ, г. Москва  Судя по редакционной почте, вопросы снижения шумов в аппаратах магнитной записи по-прежнему привлекают внимание радиолюбителей и пользователей аудиоаппаратуры. Этому способствует широкое распространение импортных магнитофонов, снабженных различными системами шумопонижения.

Недостаток информации отчасти вызван тем, что в инструкциях по эксплуатации аппаратуры нет сведений об особенностях реализации и использования встроенных систем. В результате, распространяются самые разнообразные домыслы, а проблемы с качеством звуковоспроизведения остаются. Редакция попросила нашего постоянного автора С. Агеева раскрыть сущность этих проблем.

Вначале стоит заметить, что словом "шумоподавитель" обозначают два принципиально различных типа систем: один из них предназначен дня удаления уже имеющегося в фонограмме шума (по-английски Denoiser), а другой - для предотвращения накопления шумов при передаче или записи сигналов (Noise Reductor). Эта двузначность нередко порождает путаницу и недоразумения, поэтому для обозначения систем первого типа в профессиональной среде принято пользоваться английским словом - "донойзер", чтобы отличить их от систем второго типа. Хорошо известными денойзерами являются динамические фильтры (DNL, DNR, HUSH, "Маяк"), принцип действия которых основан на одновременном уменьшении усиления и сигнала и шума в отдельной части спектра (обычно ВЧ), где полезным сигналом можно пренебречь. Их достоинство - пригодность для работы с любым источником сигнала, а серьезный недостаток - неизбежная потеря части информации.

Рис. 1. Кривые маскировки
чистого тонa узкополосными
шумами с центральными
частотами 0,25; 1 и 4 кГц
  Рис. 2 Кривые маскировки
контрольного тона (в
зависимости от его частоты и
уровня) другим чистым тоном с
частотой 1,2 кГц и уровнем
звукового давления 80 дБ. Из
работ Ликлайдера (1951),
Флетчера (1929), Уэгела и
Лэйна.
Красным цветом изображена
частота помехи, зеленым -
кривая маскировки. Тон с
уровнем ниже этой кривой не
слышен. Пробный тон с уровнем
и частотой, попадающими в
заштрихованные области,
создает биения; если этот тон
имеет уровень выше
очерченного голубой штриховой
линией, то будет слышна смесь
нескольких тонов (продуктов
интермодуляции в ушах). При
уровне пробного тона в
пределах от желтой до голубой
линии, слышны помеха, пробный
тон и разностный тон, а если
уровень лежит в пределах от
зеленой линии до желтой -
помеха и тон разностной
частоты. Слева от зеленой
линии помеха и пробный тон
слышны отдельно.
  Рис. З.а Модуляционный шум в
кассетном магнитофона при
номинальной скорости и
коррекция 70 мкс. Черная линия -
частотная зависимость порога
слышимости тротъоставного
шума, голубая линия -
частотная зависимость
третьоктавного шума паузы (*0
дБ" на ленто, т. е. 250 мВб/м
соответствует уровню 60 дБ
звукового давления), красная
линия — спектр сигнала 315 Гц с
уровнем 0 дБ, а зеленая линия —
кривая маскировки. Как видно, на
частотах выше 2 кГц маскировка
отсутствует и возрастание
высокочастотного шума в
присутствии низкочастотного
сигнала становится хорошо
слышимым.
  Рис. 3,б. То же, но частота
сигнала равна 3150 Гц. Видно,
что наиболее слышимой
оказывается не маскируемая
полезным сигналом
низкочастотная часть
широкополосной компоненты
модуляционного шума. Именно
это является основной причиной
"мутности" и "грязи" в заучании
тарелок, колокольчиков, а также
высоких нот скрипок.

Теперь денойзеры применяются в основном для "чистки" старых (или технически неудачных) записей. В бытовой аппаратуре используются редко, обычно лишь в качестве вспомогательного средства: ведь для получения оптимального результата требуется ручная или автоматическая подстройка под конкретную фонограмму. Профессиональный денойзер может быть выполнен как отдельное устройство (аналоговое или цифровое), ли 6о как программа для компьютера. В качестве примера назовем программный комплекс NoNoise фирмы Sonic Solutions. Представление о его работе вы получите, прослушав диски "The Beatles Live at the BBC".

Самый высококачественный из известных автору аналоговых деноизeров был реализован фирмой Orban. Этот пятиполосный динамический фильтр обладает уникальной способностью анализа и уровня, и типа сигнала, что предотвращает "съедание" реверберационных звуков и негромкой высокочастотной перкуссии. Системы же второго типа (Dolby, dbx, High-Corn. Super-D и др.) обрабатывают сигнал дважды: первый раз перед записью или передачей, и второй - при приеме или воспроизведении. Поэтому их ещё называют комплементарными, в отличие от систем первого типа, которые получили условное название некомплементарных. Поскольку работа комплементарных систем основана на применении комбинации из компрессора и экспандера динамического диапазона, их часто называют компандерными или просто компандерами (COMpressor+exPANDER).

Компандеры, как правило, обеспечивают большее подавление шума и меньше искажают музыкальный сигнал, чем денойзеры. Однако они предъявляют определенные требования к каналу приема-передачи (или записи-воспроизведения) и, как следствие, более "капризны" в применении.

Основной, но небесспорной, идеей, на которой базируются все системы шумопонижения (СШП), а не только компандерные. является предположение о том. что шум ухудшает восприятие только слабых сигналов, а при сильном сигнале (большой громкости) не слышен в силу эффекта маскировки слабого звука более сильным.

Если следовать этой логике, нет нужды, чтобы уровень шума был неизменен как в отсутствие, так и при при наличии полезного сигнала. То есть считается допустимым и незаметным на слух возрастание абсолютного уровня шума при возрастании уровня сигнала. Это предположение и открывает путь к построению компандерных систем, в которых коэффициенты передачи обеих половин (компрессора и экспандера) изменяются в зависимости от уровня сигнала.

Практически это означает, что слабые сигналы перед подачей их в канал передачи (например, на магнитофон) усиливаются, а сильный сигнал проходит без изменений (или даже ослабляется). Такая операция и называется компрессией (сжатием) динамического диапазона. На другом конце канала производится обратное преобразование, в результате чего сигнал приводится к исходному диапазону уровней, а шумы при слабом сигнале снижаются.

Очевидно, что при реализации такой системы динамический диапазон, измеряемый как отношение максимального пропускаемого сигнала к шуму в отсутствие сигнала, может существенно превышать это же отношение, измеренное для собственно канала передачи. Понятно, что именно первая цифра (как большая) и фигурирует в качестве величины динамического диапазона в характеристиках СШП.

Однако она характеризует, скорее, диапазон допустимых уровней входного сигнала, тогда как отношение сигнал/шум в присутствии сигнала (т.е. мгновенное отношение сигнал/шум) определяется преимущественно характеристиками самого канала передачи. Без принятия дополнительных мер, например, специальной частотной коррекции, применения многополосных систем или динамического корректора АЧХ, отношение сигнал/шум в присутствии сигнала не может превысить таковое для канала без шумоподавителя. Проще говоря, если шум в канале прослушивается и при максимальном уровне сигнала, выигрыш от применения компандирования при этом отсутствует. Как это ни неприятно, именно такая ситуация и имеет место в большинстве случаев. Связана она с тем, что широко распространенное предположение о том, что любой громкий звук делает неслышимыми (маскирует) любые слабые звуки, в том числе и шумы, в общем случае неверно.

Специалистами по психоакустике (науке об особенностях восприятия звуков человеком) много десятилетий назад установлен тот факт, что явление маскировки действует только в ограниченной области частот, преимущественно вблизи частоты громкого (маскирующего) сигнала. Наиболее наглядно это отражают так называемые "кривые маскировки" (рис. 1, 2), из которых, в частности, следует, что в присутствии узкополосных звуков громкостью до 90...95 фон2, слух человека на ряде частот все ещё способен различать звуки, находящиеся вблизи порога слышимости в отсутствие маскирующего сигнала. И лишь увеличение громкости выше примерно 95 фон приводит к рефлекторному снижению чувствительности, защищающему ухо от повреждения.

Таким образом, человеческое ухо имеет своего рода компрессор динамического диапазона, который и позволяет ему работать с сигналами в динамическом диапазоне около 130 дБ, при одновременно воспринимаемом (мгновенном) динамическом диапазоне около 90 дБ. Следовательно, если в присутствии сигнала шумы и искажения не провышают абсолютного порога слышимости или - 90 дБ относительно максимального уровня сигнала (с учетом неравномерности чувствительности слуха), то ни шума, ни искажений не будет слышно при любых условиях (и сигналах). Однако эти условия не обеспечиваются даже большинством усилителей, не говоря уже о магнитофонах.

Поэтому более реален другой подход: надо принять меры к тому, чтобы при воспроизведении различных сигналов спектры шумов и продуктов искажений системы звукопередачи проходили бы по воз можности ниже кривых маскировки этих сигналов. В частности, для интермодуляционных продуктов искажений это означает, что крайне нежелательно образование разностных тонов при обработке высокочастотных сигналов, равно как и суммарных тонов от низкочастотных сигналов. В то же время гармонические искажения основных тонов вполне могут иметь уровень -50 дБ и оставаться незамеченными.

Что же касается шумов, то характер их восприятия иной, нежели "организованных" звуков. Способность человеческого слуха воспринимать шумы зависит от спектра и скорости изменения полезного сигнала, и допустимое отношение сигнал/шум в присутствии сигнала с уровнем 85...95 дБ (относительно порога слышимости) составляет от 40...45 дБ при быстро изменяющемся и широкополосном полезном сигнале, до примерно 75...85 дБ для чистых тонов, особенно по краям звуковой полосы частот. В среднем оно составляет 50...65 дБ.

Исходя из этого, можно сказать, что в магнитной записи компандерные шумоподавители в большинстве случаев работают "на грани фола". Даже при идеальной согласованности работы компрессора и экспандера, если канал записи-воспроизведения имеет отношение сигнал/шум в присутствии максимального сигнала меньше 80 дБ, возможны ситуации, когда шум всё-таки будет слышен.

Относительный уровень шума в каналах записи-воспроизведения аналоговых магнитофонов, даже в отсутствие сигнала, как правило, не дотягивает до -80 дБ. Фигурирующие в описаниях некоторых бытовых магнитофонов (например, Tandberg SE-20) такое значение достигнуто за счет применения нестандартной частотной коррекции, однако с потерей перегрузочной способности на высших частотах.

Мало того, в присутствии сигнала уровень шума в аналоговом магнитофоне всогда увеличивается, составляя при номинальном уровне сигнала величину от -35 до -60 дБ. Этот увеличенный шум вызван присутствием сигнала, и он примерно пропорционален уровню сигнала. Потому-то его и назвали модуляционным шумом.

При записи чистого тона с номинальным уровнем спектр модуляционного шума на доброкачественном магнитофоне состоит из двух компонент: сравнительно узких боковых полос, вызываемых паразитной амплитудной и частотной модуляцией записанного сигнала, и широкополосного шума, превышающего уровень шума паузы на 10...25 дБ в зависимости от частоты сигнала и качества ленты.

Боковые полосы, если только их суммарный уровень не превышает -40...-46 дБ, при небольшой их ширине (менее 5...8% от центральной частоты), практически никогда не слышны, поскольку оказываются под соответствующей кривой маскировки (рис. З.а и З.б)3

Широкополосная же компонента при воспроизведении чистых тонов достаточно часто слышна (в виде "загрязненности" звука) даже на студийном мастер-магнитофоне, поскольку её общий уровень редко оказывается ниже -50 дБ относительно уровня сигнала. К сожалению, существуют всего два способа снижения уровня широкополосной компоненты модуляционного шума: улучшение качества лент и увеличение ширины дорожек записи (каждое удвоение даёт выигрыш всего 3 дБ).

Модуляционный шум доставляет массу неприятностей: каждый удар по клавишам рояля сопровождается потрескиванием, как будто они проложены бумагой, басовые трубы органа сильно сипят, струнные инструменты начинают напоминать духовые, из тарелок "сыплется песок" и т. д. Кстати, главной причиной слышимых различий при использовании разных типов магнитных лент является именно разница в величине интермодуляционных искажений и в уровне (а также и частотной зависимости) модуляционного шума.

Единственный способ уменьшить заметность роста широкополосного шума в присутствии сигнала - так называемого "дыхания" (breathing) или "накачки" (pumping) - это ввести такую частотную коррекцию в записываемый сигнал, чтобы обратная частотная коррекция при воспроизведении ослабила не маскируемые полезным сигналом части спектра шума (рис. 4).

Такая частотная коррекция может быть осуществлена несколькими способами. Первый и наиболее очевидный -разделение спектра сигнала на отдельные полосы, внутри каждой из которых работает свой компандер. Благодаря этому наличие сильного сигнала в одной из полос не приводит к появлению шума в остальных. Как давно установлено, для обеспечения приемлемого качества работы такой системы требуется от четырех до семи полос, что резко усложняет конструкцию шумоподавителя и делает его работу критичной к точности АЧХ канала записи-воспроизведения. Так, построенная по этому принципу четырехполосная Dolby-A требует настройки АЧХ магнитофона с погрешностью не более ±0,3...0,5 дБ.

Второй, более простой способ состоит в использовании фиксированной цепи частотной коррекции, подобранной таким образом, что для большинства сигналов обеспечивается АЧХ, близкая к оптимальной для подавления широкополосного шума. Качество работы такой системы очень сильно зависит от грамотного подбора характеристик коррекции. Подобный подход применен в большинстве широкополосных компандеров (High Com, ADRS, dbx и т. д.). К сожалению, характеристики коррекции в известных автору широкополосных компандерах далеки от оптимальных.

Рис 4, а Степень зависиости
модуляцционного шума можно
снизить, если при
воспроизведении ослабить те
части спектра, где он не
маскируется сигналом. Так для
низкочастотных сигналов (до
400 Гц) роль такого адаптивного
фильтра может выполнять
экспандер шумоподавителя
Dolby-B. Его АЧХ приведена в
верхней части рисунка, а
результирующий спектр сигнала
изображен оранжевой линией. Рас. 4, б. То же, но частота
полезного сигнала 3150 Гц.
Видно, что необходимая АЧХ
фильтра, уменьшающего
заметность модуляционного
шума, оказывается совсем
другой - со "ступенькой".

Третий способ состоит в использовании компандеров с адаптивной частотной характеристикой, автоматически подстраивающихся под спектр входного сигнала. Этот подход (в сочетании с цепочкой с фиксированной АЧХ) реализован в системе Dolby-S/SR, Характер изменения частотных характеристик компрессора приведен на рис. 5. Система с адаптивной АЧХ, как правило, отлично обрабатывает одиночные чистые тона и одноголосные инструменты, но на реальном сигнале возможности адаптации, увы, ограничены. Так, в системе Dolby-S/SR при наличии широкополосных сигналов прекращается "вытягивание" средних частот во время записи. При воспроизведении это приводит к "прорывам" шумов и искажений в области частот примерно от 500...800 Гц до 2...4 кГц ("неестественная середина").

Естественно, возможны и комбинации перечисленных способов.

Все рассмотренные выше методы предполагают, что временные и уровневые характеристики компрессора и экспандера одинаковы, а канал записи-воспроизведения не вносит искажений структуры сигналов. Практически рассчитывать на это не приходится, поэтому в компандерных системах неизбежно возникают ошибки слежения (tracking errors). Их влияние на конечный сигнал сильно зависит от устройства системы, но сводится преимущественно к двум моментам: к искажению процессов нарастания и спада звуков, что изменяет их тембр, и к появлению помех срабатывания (щелчков и хлопков).

Основной причиной появления щелчков и хлопков является, например, следующий факт. При быстрой реакции компрессора на скачок уровня сигнала (например, при хлопке в ладоши) ослабляются одновременно все частоты в полосе, обрабатываемой компрессором. На экспандер же составляющие разных частот из-за фазовых сдвигов приходят с разбегом по времени, но обрабатывают ся одновременно. Как результат, появляются импульсные погрешности в выходном сигнале и соответственно щелчки срабатывания (см. рис. 6,а и 6,б).

Что касается ошибок по уровню сигнала, то чаще всего они возникают из-за погрешностей АЧХ или коэффициента передачи канала записи-воспроизведения. Еще одной причиной погрешностей служит паразитная амплитудная модуляция сигнала в канале записи-воспроизведения.

Рис. S. Семейство АЧХ кодера
Dolby-SR при различных уровнях
сигнала с частотой 200 Гц
(коричневые линии) и с частотой
3 кГц (голубые линии).
Использование обратных
частотных характеристик при
воспроизведении позволяет
существенно снизить
заметнооть как обычного, тек и
модуляционного шума. Рис. 6,а. Влияние фазовых
искажений в канала передачи
скомпрессированного сигнала,
Сверху вниз: осциллограмме
входного сигнала (затухающее
среднечастотное колебание,
наложенное на более слабый
низкочастотный сигнал),
осциллограмма выходного
сигнала компрессора,
осциллограмма фазово-
искаженного сигнала,
осциллограмма
экспандироввнного сигнала.
Видны большая погрешность и
помеха срабатывания. Рис. 6, б. "Съедание" атаки
музыкального сигнала при
зкспандировании из-за фазовых
искажений компрессированного
сигнала (последовательность
осциллограмм, как на
предыдущем рисунке). Виден
также выброс при срабатывании
компрессора.

И наконец, при малых уровнях сигнала представляет проблему проникание разнообразных помех в цепи управления компрессором или экспандером. Для уменьшения проникания радиочастотных (и инфранизкочастотных) помех на входах компандера обязательно должны стоять полосовые фильтры, отсекающие сигналы с частотами, выходящими за пределы звуковой полосы частот. Отсутствие такого фильтра зачастую приводит к неработоспособности шумоподаеителя в реальных условиях.

Именно из-за перечисленных выше обстоятельств звучание магнитофона, оснащенного любым из известных компандеров, не будет свободно от проблем. К сожалению, идеального (или практически безупречного) компандерного шумоподавителя сегодня не существует. Более того, в связи с развитием цифровых технологий основное внимание разработчиков СШП обращено на создание денойзеров. Однако работы по совершенствованию компандеров ведутся и в настоящее время. К удачным разработкам можно отнести, например, компандер в звуковом канале системы видеозаписи VHS-HiFi.

Тем не менее в массовых кассетных магнитофонах по-прежнему используется Dolby-B/C, реже Dolby-S или dbx. Поэтому каждый раз, прежде чем нажать кнопку, стоит задуматься, так ли необходимо использование данного компандера при данной записи? И если исходная запись на компакт-диске среднего качества, а магнитофон изрядно шумит (как чаще всего и бывает), то использование шумоподавителя обычно оказывается наименьшим злом.

Вернуться к содержанию журнала "Радио" 2 номер 1998 год







Рекомендуемый контент




Copyright © 2010-2019 housea.ru. Контакты: info@housea.ru При использовании материалов веб-сайта Домашнее Радио, гиперссылка на источник обязательна.