Z-термисторы новый класс температурных сенсоров

В.Зотов

Z-термисторы новый класс температурных сенсоров

    Oдной из наиболее распространенных задач про мышленной и бытовой автоматики, решаемых путем температурных измерений, является задача выделения заданного значения температуры или диапазона температур, в пределах которого контролируемые физические процессы протекают нормально, с требуемыми параметрами. Это, в первую очередь, относится к приборам и устройствам, работающим при температурах, определяемых условиями жизнедеятельности человека и используемых им при этом приборов машин и механизмов, т.е. √40 е +100╟С, например, кондиционирование температуры жилых, складских и технологических помещений, контроль нагрева различных двигателей, трансмиссий, тормозных устройств и т.п., системы пожарной сигнализации, контроль температуры в медицине, биотехнологиях и сельском хозяйстве и пр. В качестве чувствительных элементов таких систем в последнее время широко используются полупроводниковые термосопротивления с отрицательным температурным коэффициентом или термисторы (NTC-thermistors). Однако, для решения задачи в целом, т.е. получения электрического сигнала, возникающего при повышении или понижении температуры контролируемого процесса до заданного значения, термистор должен быть снабжен дополнительными электронными схемами, которые и осуществляют решение задачи выделения заданного значения температуры. Такова, например, схема, приведенная на рис.1. В Институте проблем управления РАН совместно с фирмой VZ SENSOR Ltd., на основе полупроводниковых структур с L-образной вольтамперной характеристикой были разработаны интеллектуальные (функциональные) термисторы (Z-thermistors), которые способны решать задачу выделения заданного значения температуры без использования дополнительных электронных схем [1,2,3].

Рис. 1

Рис. 2

    Z-термисторы представляют собой полупроводниковую p-n структуру, включаемую в прямом направлении (+ к p-области структуры) в цепь источника постоянного напряжения. Структура обладает функцией перехода из одного устойчивого состояния (с малым током) в другое устойчивое состояние (в 50 е 100 раз большим током) при ее нагреве до заданного значения температуры. Установка требуемого значения температуры срабатывания осуществляется простым изменением напряжения питания. Длительность перехода структуры (Z-термистора) из одного устойчивого состояния в другое 1 е 2 мкс. Схема включения Z-термистора состоит из источника питания U и нагрузочного резистора R, который одновременно служит ограничителем тока Z-термистора при его переходе в состояние с большим током (рис. 2). Выходной сигнал (бросок напряжения) может быть снят как с нагрузочного резистора R, так и с самого Z-термистора, но с обратным знаком. Как уже было сказано, Z-термистор может быть настроен на любое значение температуры в диапазоне √40 е +100╟С путем изменения питающего напряжения U. При этом могут быть изготовлены разные типы Z-термисторов, срабатывающие при одной и той же температуре от разных напряжений питания. Для того, чтобы разделить Z-термисторы по типам, было введено понятие базовой температуры. В качестве базовой было принято значение комнатной температуры (room temperature) +20╟С. Принципиально Z-термисторы могут быть изготовлены на любые напряжения срабатывания в пределах от 1 до 100 В при базовой температуре, но для удобства пользователей мы ограничились рядом типовых значений напряжения, чаще всего используемых в электронной технике, а именно: 1,5 В; 3 В; 4,5 В; 9 В; 12 В; 18 В; 24 В (см. таблицу).

Таблица. Технические характеристики Z-термисторов при температуре
+20°C и спротивлении резистора R = 0.25 + 5 кОм Тип Z-термистора    TZ-1 TZ-3 TZ-4 TZ-12 TZ-18 TZ-24 Пороговое напряжение Uth(B)






Рекомендуемый контент




Copyright © 2010-2017 housea.ru. Контакты: info@housea.ru При использовании материалов веб-сайта Домашнее Радио, гиперссылка на источник обязательна.