Спиральные антенны в сотовых телефонах.

Спиральные антенны в сотовых телефонах.

А. Курушин

Спиральные антенны в сотовых телефонах

В статье рассмотрены вопросы применения спиральных антенн в сотовых телефонах. Для расч╦та и оптимизации основных характеристик антенной системы - диаграммы направленности, диапазона рабочих частот - применяется программа электродинамического анализа IE3D фирмы Zeland (USA). Полученные результаты позволили выработать ряд рекомендаций для увеличения чувствительности сотового телефона.

Введение

Спиральные антенны (рис. 1 и 2) сейчас являются самыми распростран╦нными антеннами в сотовых телефонах. Альтернатива им - микрополосковые плоские антенны различных модификаций (PIFA) пока имеют ограниченное применение.

Рисунок 1. Спиральные антенны со штырем

Недостатком внутренних микрополосковых антенн, к сожалению, является необходимость разработки отдельной антенны для каждого типа сотового телефона, что замедляет модернизацию и разработку новых аппаратов. Спиральные антенны универсальны, разрабатываются как отдельный автономный элемент, обычно на входное сопротивление 50 Ом, и это позволяет конструктору вы-брать подходящую антенну из широкого набора разработанных спиральных антенн только по частотным характеристикам.

Рисунок 2. Спиральные антенны: а) без штыря с равномерным шагом (Fixed antenna); б) с переменным шагом (более широкополосные)

Однако, при выборе готовой антенны возможны потери в характеристиках излучения всей антенной системы из-за того, что корпуса телефонов значительно отличаются друг от друга. Корпус современного телефона имеет размер, соизмеримый с половиной длины волны и поэтому влияющий на характеристики антенны.

Известно, что внешний вид корпуса является важной характеристикой сотового телефона и поэтому способствует разработке и поставке на рынок вс╦ большего количества новых модификаций.

При выборе спиральной антенны конструктору важно выяснить, как она будет работать в новом корпусе. Это особенно важно для двухдиапазонной спиральной антенны, так как влияние корпуса на е╦ характеристики происходит в обоих диапазонах.

Модель корпуса ( рис. 3), его формы и заполнения влияют на точность полученного результата; корпус может быть частично заполнен, покрыт диэлектрическим слоем и металлизирован с внутренней стороны. Реальная форма корпуса изменяет идеальные характеристики антенны, когда можно считать, что е╦ противовес - бесконечная идеально проводящая поверхность.

Рисунок 3. Сотовый телефон с крышкой и спиральной антенной со штырем

Для проектирования антенной системы с уч╦том корпуса желательно представлять методику расч╦та самой спиральной антенны. Соображения, положенные в основу разработки геометрии двухдиапазонной антенны, важны, поскольку корпус существенно изменяет е╦ свойства.

Составление электрической эквивалентной схемы позволяет провести эскизный расч╦т антенной системы. Такая эквивалентная схема может состоять из параллельно соедин╦нных спирали (двух последовательных е╦ фрагментов) и штыря.

Рассматриваемые антенны имеют два положения штыря: внизу и вверху. Выдвижение штыря увеличивает эффективность излучения антенны на несколько дБ. Но это выдвижение также изменяет согласование и сопротивление излучения.

Спиральная антенна со штырем и без штыря

Эта классическая комбинация антенн объединяет преимущества несимметричного вибратора и спиральной антенны нормального режима (с излучением перпендикулярно оси)(рис. 4).

Рисунок 4. Спиральная антенна в задвинутом состоянии и с выдвинутым штырем

Эта широко распростран╦нная комбинация оптимально сочетает характеристики в режиме выдвинутого штыря и в нижнем его положении. При этом важно, что спиральная антенна нормального режима более широкополосна, чем несимметричный вибратор.

Верх штыря делается неметаллическим, поэтому при нижнем положении штыря антенна становится просто спиральной в нормальном режиме, то есть с излучением перпендикулярно оси. Чувствительность сотового телефона в этом случае на 1√2 дБ выше, чем при задвинутом штыре.

Штырь имеет металлический конец внизу и соединяется с нижним патроном спиральной антенны, когда штырь вы-двигается в верхнее положение. Электрически штырь подсоединяется параллельно спиральной антенне. Часть штыря-вибратора, проходящая через спиральную антенну, подключена так, что запитывается параллельно спирали. В таком состоянии антенна подстраивается для получения реального входного импеданса в обоих режимах: выдвинутом и вдвинутом.

Эффективность излучающей способности антенны характеризуется, как известно, сопротивлением излучения. А оно зависит от внешней физической длины спиральной антенны и только в небольшой степени от диаметра спирали [1]. Сопротивление излучения несимметричного вибратора меняется как нелинейная функция, в зависимости от длины несимметричного вибратора, Rs ~ 10x²**(1 + 0,19x²), где x = kL, если менять длину L от очень короткой до четверти длины волны. При x = 1,57 это соответствует /4 штырю с сопротивлением излучения 36Ом. Четвертьволновый диполь с сопротивлением 36Ом имеет слишком малое значение, что непрактично, поскольку очень короткий несимметричный вибратор имеет малую эффективность.

Для всего телефона (антенна + корпус) выражение для сопротивления излучения будет намного более сложное. Сопротивление излучения для всего телефона обычно в несколько раз больше, чем для несимметричного вибратора. При согласовании линии небольшой длины с 50-Ом линией полоса рабочих частот уменьшается пропорционально сопротивлению излучения. Обычно длина спиральной антенны равна 20√40 мм для частоты 900 МГц, а минимальная длина ограничивается полосой (равной 8√10%). Из-за того, что корпус телефона является частью излучающей структуры, подстройка четвертьволнового шлейфа будет зависеть от размера и формы телефона. Длина несимметричного вибратора (штыря) - 40...45 мм.

Согласующая цепь СТЦ (рис. 5), находящаяся на плате сотового телефона, должна быть разработана так, чтобы обеспечивать минимальный КСВ и для режима вынутого штыря и для режима вставленного. Требуемый КСВ обычно равен 1:2 в диапазонах, в которых антенна используется.

Рисунок 5. Эквивалентная схема спиральной антенны со штырем

С практической точки зрения, имеются два варианта работы телефона: в свободном пространстве (FS - free space) и вблизи человека (TP - Talk Position). Согласующая цепь рассчитывается на выполнение согласования в худшей ситуации из 4 комбинаций: FS/TP и выдвинута/вдвинута. Добавим к этому то, что большинство современных телефонов должны работать в двух и более диапазонах. Таким образом, проектировщик должен получить серию диаграмм направленности на частотах 900 и 1,800 МГц.

Теоретический анализ спиральной антенны сотового телефона

Спиральная антенна сотового телефона - это антенна с поперечным излучением, Normal-mode helical antenna (NMHA), что отличает е╦ от спиральной антенны с осевым излучением, используемой в радиолокации. Поскольку максимум излучения NMHA перпендикулярен продольной оси z, по своим характеристикам излучения антенна близка к обычному несимметричному вибратору.

Когда окружность спиральной антенны равна приблизительно длине волны, доминирует излучение осевого типа волны, но когда окружность намного меньше длины волны, преобладает боковая волна.

В симметричном и несимметричном диполях ток теч╦т вертикально вдоль оси z, а в спирали (в петле) - горизонтально. В этом смысле спиральная антенна - антипод дипольной. Электрический диполь в дальней зоне имеет вертикальную поляризацию, петля - горизонтальную. Петля является физической реализацией магнитного диполя.

Если размеры спиральной антенны малы (nL < 1), максимум излучения сосредоточен в плоскости xy, а излучение по оси z отсутствует.

Когда угол подъ╦ма спирали приближается к 0, она превращается в петлю. Когда угол достигает 90 градусов - в вибратор.

Рисунок 6. Векторы электрического поля в дальней зоне

Дальнее поле спиральной антенны можно считать состоящим из двух компонентов электрического поля E, E (рис. 6). Пусть спиральная антенна состоит из определ╦нного числа маленьких петель и коротких диполей, соединяющих их последовательно (рис. 7). Диаметр петель D равен диаметру спиральной антенны, а длина каждого диполя S равна расстоянию между витками спиральной антенны. Предположим, что токи текут равномерно по величине и фазе по всей длине спиральной антенны. Если спиральная антенна мала, дальнее поле не зависит от числа витков. Таким образом, для расч╦та дальнего поля достаточно расч╦та одной маленькой петли и одного короткого диполя.

Рисунок 7. Модель спирали






Рекомендуемый контент




Copyright © 2010-2018 housea.ru. Контакты: info@housea.ru При использовании материалов веб-сайта Домашнее Радио, гиперссылка на источник обязательна.