КВ УСИЛИТЕЛИ МОЩНОСТИ

главная\р. л.  конструкции\усилители мощности\. . .

Владимир Дроган UY0UY
Героев Днепра 38Е, кв.63
Киев, Украина, 04214
E-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript

КВ УСИЛИТЕЛИ МОЩНОСТИ

Выходным называется усилитель, нагруженный на антенну. Выходной усилитель потребляет большую часть энергии. Его работа в основном определяет энергетические показатели всей радиостанции, поэтому главным требованием для выходного каскада усилителя является получение высоких энергитических показателей. Кроме того, для выходного усилителя весьма важна хорошая фильтрация высших гармоник. Согласно принятым нормам, мощность излучения любой высшей гармоники в стационарных передатчиках на частотах выше 30 мГц не должна превышать 25мВт. На частотах ниже 30 мГц (для передатчиков мощнос-

тью до 500 Вт) для любого из побочных излучений установлен уровень – 40 dB, но не более 50 мВт. Этим же нормам должны соответствовать и выходные каскады передвижных передатчиков.

Хороший современный КВ усилитель мощности для работы в радиолюбительском эфире довольно сложное и трудоемкое устройство, о чем свидетельствуют мировые цены "на западе" на фирменные усилители, хотя бы по отношению к стоимости трансиверов среднего класса, выпускаемых теми же фирмами. Это объясняется, во-первых, высокой стоимостью самих ламп, применяемых в усилителях, а вовторых, также высоким процентом ручного труда при изготовлении усилителей.

В распоряжении многих радиолюбителей стран СНГ, а именно на них рассчитана данная публикация, находится большое количество трансиверов с выходной мощностью порядка 10 - 15 Вт, как «home made» производства, так и привезенных, как правило с различных распродаж (по известным причинам), которые с успехом используются ими при проведении как повседневных QSO, так и при работе в различных "test’ax". Однако, не всегда работа на QRP доставляет огромное удовольствие, особенно при работе с редким DX да еще в бешеном «pule’up». Поэтому большая часть радиолюбителей со временем рано или поздно, начинает думать об увеличении мощности своего аппарата..

Однако постройка хорошего «Power’а», имеющего сравнительно малые размеры, приличный внешний вид и удовлетворительные технические характеристики, несмотря на кажущуюся схемную простоту, только на первый взгляд простое дело.

Вопервых, сразу же встает вопрос, чему отдать предпочтение, лампе или транзистору? Многолетняя практика эксплуатации как первых, так и вторых показала, что ламповые усилители гораздо проще в изготовлении и менее критичны к условиям эксплуатации (имеются в виду усилители с Р вых .³ 150 Вт), а вес анодных трансформаторов практически компенсируется весом радиаторов, необходимых для охлаждения мощных транзисторов. При этом же транзисторы более капризны в эксплуатации, особенно к перегрузкам, поэтому эксперименты с ними, учитывая стоимость мощных транзисторов, иногда обходятся очень дорого. Кроме того, на мой взгляд, гораздо проще выполнить источник питания мощностью 2кВт, имеющий напряжение 2000В при токе 1А, чем 20В при токе 100А. А наличие малогабаритных электролитических конденсаторов, рассчитаных на большое напряжение и имеющих большую емкость, позволяет создавать малогабаритные источники высокого напряжения для питания ламповых усилителей непосредственно от промышленной сети без использования силовых трансформаторов.

Но и при постройке лампового усилителя, несмотря на кажущуюся его схемную простоту, приходится извести кучу металла, а он теперь не валяется во дворах заводов, затратить массу времени на компоновку, по много раз вязать и перевязывать провода жгутов (если таковые вообще в наличии) прежде, чем выйдет что-то путное. То не там просверлил, то одна деталь налезает на другую и т.д. Этот сложный тернистый путь пройден и автором, пока не была отработана универсальная конструкция усилителя на двух лампах ГИ-7Б, а потом просто появился спортивный интерес - делать усилители на тех лампах, которые попадаются в руки. В процессе работы был накоплен некоторый материал, к которому добавлен многолетний опыт журналов "Радио" и «Радиолюбитель», все это и легло в основу материала, выставленного на суд читателей и, кото-рым хотелось бы поделиться с теми, кто держит в руках эту брошюру.

Вниманию коротковолновиков предлагается полное схемное и конструктивное описание нескольких вариантов конструкций простых, но весьма надежных и экономичных, усилителей мощности, на хорошо зарекомендовавших себя и доступных (правда, к сожалению, в настоящее время несколько дороговатых) отечественных лампах. Все описанные ниже усилители были реально изготовлены и прошли в течение двух, трех лет испытание, как в повседневной работе, так и в условиях «test’ов» и многочисленных вылазок за романтикой на «природу», и использовались при круглосуточной работе преимущественно на передачу. Усилители предназначены для совместной работы с трансиверами (передатчиками), имеющими выходную мощность от 150-200 мВт до 30-40 Вт.

Публикуемый материал рассчитан на широкий круг радиолюбителей, не имеющих специального технического образования, сложного слесарного инструмента и опыта постройки подобных конструкций, поэтому, некоторые вопросы возможно на чей-то взгляд освещены слишком подробно.

Следует сразу заметить для критики, что в данной статье автором выражено только свое видение решения этого вопроса и, поэтому изложенный материал не претендует на оригинальность и бесспорность как в суждениях и схемных решениях, так и в практической реализации конструкций собственно усилителей, так и их отдельных узлов.

Основные задачи, которые мы попытались решить в данной публикации- это :

  • получение универсальной конструкции усилителя, позволяющей собрать ее радиолюбителю, не имеющему большого опыта в постройке подобных устройств и не обладающему высокой квалификацией;
  • дать возможность радиолюбителям, без серьезных переделок конструкции, экспериментировать с отдельными узлами, использовать (иметь возможность замены) в схеме усилителя наиболее часто встречающиеся отечественные генераторные лампы средней мощности;
  • применение в конструкции усилителя мощности максимального числа общедоступных деталей широкого применения заводского изготовления;
  • возможность применения при изготовлении усилителя минимума сложного слесарного и токарного оборудования, а также сервисной аппаратуры и измерительных приборов при его настройке.

Усилители эксплуатировались с различными типами трансиверов: UW3DI-2; RA3AO; Эфир- М; Волна, UA1FA (передающая приставка), на CB и 10-ти метровом диапазоне для раскачки использовались ONWA и LINCOLN. Во всех случаях качество выходного сигнала однозначно определялось качеством сигнала используемого трансивера.

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ УСИЛИТЕЛЕЙ

В схемах усилителей использованы лампы ГИ-7Б, ГИ-7БТ, ГИ-6Б (2шт.), ГУ-72 (2шт.), ГМИ-11, ГУ-74Б, 6П45С, 6П42С, 6П36С (4шт.), ГУ-50 ( 3 и 4шт.) Г-807(4шт.), ГК-71. Усилители работают в классе AB1 (в режиме SSB) и классе C (режим CW).

Диапазон рабочих частот ………………………………………………..1,8 - 28,7 МГц Вид излучения …………………………………………………………………..SSB, CW, RTTY Мощность, подводимая к анодной цепи в течение длительного времени в режиме "нажатия" ……………………………………………...………..…………650 Вт max. ( зависит от мощности возбуждения и ограничивается мощностью источника анодного напряжения); мощность в нагрузке* в полосе частот 1,8 - 28,7 мГц …………….…….300-350 Вт (в зависимости от КПД выходного контура на данном диапазоне); входное (выходное) сопротивление усилителя ……………………...... 75 (50) Ом; мощность, потребляемая усилителем от сети в режиме "нажатия" ….. 700 Вт max; в режиме "молчания" ……………………………………………….…….130 Вт; в режиме приема …………………………………………………………...60 Вт. габаритные размеры усилителя (без ножек) мм ……………………..352 ´ 153 ´ 350; масса усилителя …………………………………………………......около 25(13)** .кг .

*- Имеется в виду гарантированная выходная мощность, т.е. мощность, получаемая при номинальных значениях токов и напряжений трансформаторов и 70% робочем цикле, выходная мощность отдельных экземпляров достигает 500 Вт.

**- Для схем с бестрансформаторным питанием.

POWER AMPLIFIER DVA - 300

 Power amplifier uses one GU-74B, GMI-11 tube, two GI-7B (GI-7BT, GI-6B), GU-72 tubes, three or four GU-50, four 6P45S (6P42S, 6P36S), four G-807 tubes, four G-811 tubes, GK-71. The PA covers 160-10 m (also all WARC). It requires 10-40 watts to produce full power. The PA uses AB class (SSB), C class (CW) grounded cathode circuit. The AC power supply is built-in and can be set for 220/230 VAC

 

SPECIFICATIONS

Frequency range …………………………………………..………...…….1.8-28 MHz Modes…………………………………………………………………SSB, CW, RTTY
Input Power……………………………………………..………………650 watts max.

maximum

Power Output…………...…...…………………………..……..……..300-350 watts
DriverPower………………..……………………...………………………5-40 watts
Efficiency………………………………………………………...……..……55-65%
Input/Output impedances……………………………………..……………75(50) Om
Plate Voltage…………………...………………………….……………....1300 volts
Harmonics…………………………………………….…………………35 dB typical
Front panel status indicators……………….……..………standby, operate, transmit
Metering……………………………………………………...………….……..Ig, Iout
Primary Power……………………………………………………..220/230VAC, 3A
Dimensions………………………………………………. …….350 x 150 x 350 mm
Weight ………………………...…………………….…………………… …….25 Kg

ПРИМЕЧАНИЕ: Все ссылки на номера рисунков и чертежей касаются сборочных чертежей, а не описания.

Во всех приведенных ниже схемах и сборочных чертежах нумерация элементов и деталей, выполняющих одно и то же назначение, сохранена от схемы (чертежа) к схеме (чертежу). Если на чертеже нет какогото очередного номера элемента либо размера на чертеже, это значит, что он был на предыдущей схеме (чертеже) и соответственно, вновь появляющиеся элементы имеют номер, не встречающийся ранее.

1 . БЛОК ПИТАНИЯ УСИЛИТЕЛЯ МОЩНОСТИ.

 Принципиальная схема блока питания (в дальнейшем БП) изображена на рис.1. БП для всех вариантов усилителей (за исключением бестрансформаторных) собраны по схеме удвоения анодного напряжения, что в основном обусловлено типом применяемых для получения анодного напряжения трансформаторов (так называемая схема Латура), Схема удвоения может работать только на емкостную нагрузку, частота пульсаций выпрямленного напряжения получается вдвое выше частоты сети. По своим энергитическим характеристикам эта схема не уступает мостовой схеме, работающей на емкость.

Выпрямитель анодного напряжения выполнен на четырех диодах КД 210В. В практике принято для каждого плеча схемы удвоения на каждые тысячу вольт выпрямленного напряжения использовать по одному диоду, поэтому они включены последовательно по два в каждом плече. Данный тип диодов позволяет их применение в последовательном включении без шунтирования резисторами. При использовании же диодов старых типов, параллельно им необходимо вкючить резисторы, для равномерного распределения обратного напряжения (из расчета 750-1000 кОм на 1000 В напряжения) и зашунтировать их конденсаторами емкостью 0,01-0,05 мкФ для предохранения от возможности электрического (не теплового!) пробоя кратковременными импульсами, по разным причинам возникающими в цепях.

Как показала трехлетняя практика эксплуатации усилителей (по приведенным схемам было изготовлено несколько вариантов таких усилителей на различных лампах), в усилителях можно абсолютно спокойно применять выпрямитель с удвоением напряжения и электролитическими конденсаторами в качестве емкостной нагрузки, причем качество сигнала практически зависит только от качества сигнала применяемого передатчика. Габаритная мощность трансформатора питания может быть всего на 10--15% больше мощности, подводимой к оконечному каскаду. Кроме того, при этом его вторичная обмотка имеет в два раза меньшее число витков, а сечение провода наоборот увеличивается, что облегчает намотку трансформатора.

Величина анодного напряжения выбрана исходя не только от типа примененных трансформаторов, но также с учетом получения большего значения величины эквивалентного сопротивления анодной нагрузки (Rэ = Uа / 2Iа ), так как при малом Rэ лампы работают с большими анодными токами (мало Uа), вследствие чего из-за увеличения требуемой мощности раскачки уменьшается как КПД каскада, так и срок службы ламп.

Учитывая применение в усилителях включения ламп по схемам с общим катодом, источник обеспечивает также полный набор остальных напряжений: необходимых для работы усилителя: напряжений экранной и управляющей сеток, напряжения накала и служебных напряжений, необходимых для питания цепей автоматики и сигнальных цепей. Несущественные различия имеются только в схеме питании накальных цепей, она выполняется в зависимости от напряжения накала конкретной лампы, при этом используются различные накальные трансформаторы. В БП применены только трансформаторы промышленного изготовления, которые прошли Государственные испытания в предельных режимах эксплуатации и обеспечивают возможность непрерывной круглосуточной работы при номинальных напряжениях и токах в жестких климатических условиях, повышая тем самым надежность при эксплуатации усилителя. А учитывая то, что средняя мощность усилителя при работе в режиме SSB составляет порядка 30% от пиковой мощности, а длительность пиков полной мощности при этом достаточно кратковременна, с усилителя можно получить большую выходную мощность. Следует учесть, что, если Вы собираетесь использовать усилитель для работы цифровыми видами излучения либо FM (т.е. при работе предполагается постоянное излучение несущей) то в этом случае, вопервых, возможны просадки анодного напряжения непосредственно до величины (эффективное значение) напряжения выходной обмотки трансформатора, что приводит к появлению искажений выходного сигнала, а вовторых, к перегреву и соответственно выходу из строя самой лампы выходного каскада. Поэтому в таких случаях выходную мощность необходимо снизить. Кроме того, сетевые обмотки этих трансформаторов содержат отводы, позволяющие использовать трансформаторы при повышенном либо пониженном напряжении питающей сети, что особенно важно для сельской местности. А наличие у них отводов во вторичных обмотках позволяет в широких пределах варьировать величиной анодного напряжения. Варианты замены анодных трансформаторов приведены в Таблице1. Все сказанное, ни в коей мере, не исключает Вашей инициативы по самостоятельному изготовлению трансформаторов при отсутствии возможности приобретения заводских экземпляров. Просто при их изготовлении необходимо учитывать следующее:

Вопервых, высоковольтная обмотка должна быть надежно изолирована от всех остальных обмоток (лучше всего ее намотать последней).

Вовторых, трансформатор должен быть обязательно надежно пропитан лаком. Наши «шэки» зачастую не самое идеальное место в квартире (если в квартире!) и увеличение влажности воздуха зачастую является причиной пробоя обмоток.

Сам порядок рассчета трансформаторов на железе марки ПЛ здесь не приводится, так как он неоднократно описывался в различной литературе, например см. [2] .

 

Блок питания усилителя обеспечивает следующие выходные параметры:

анодное напряжение …………………………………………….1330 (1500) В / 500 mA; стабилизированное напряжение экранной сетки ………………………300 В / 50 mA; стабилизированное напряжение управляющей сетки …………………100 В / 50 mA; напряжение накала (переменное) ………………….....…26 В / 2,1 A (12,6 В / 7,0 A); напряжение питания реле ……………………………………….………..24 В / 700 mA; напряжение питания сигнальных ламп (переменное) …………………6,3 В / 700 mA.

 ПРИМЕЧАНИЕ:

1. Применяемые в схеме умножения напряжения конденсаторы должны иметь одинаковое напряжение утечки.

2. Напряжение анодного источника указано для трансформаторов ТА262-127/220-50.

3. Так как при использовании ламп ГИ-7Б в схемах с общей сеткой нет необходимости в отдельном источнике напряжения смещения, величину напряжения анода можно увеличить до 1500 вольт за счет использования для этой цели дополнительно включаемых последовательно обмоток 15-19 и 21 - 22 трансформаторов Тр.1 и Тр.2. Конденсаторы С1- С8 типа К50- 20 при этом необходимо поменять на К50-7 или аналогичные, рассчитанные на рабочее напряжение 450 В. Еще лучше применить импортные конденсаторы, например фирмы “Samsung”, которые не требуют подбора, правда их стоимость раза в три выше.

4. Для симметричного питания нитей накала ламп обмотку трансформатора Тр.3, с которой берется напряжение накала при возможности лучше всего выполнить со средней точкой, которую необходимо посадить на схемную землю, как это показано на рис.1А.2 (это относится ко всем описанным схемам). Если обмотка не имеет средней точки, ее легко получить при помощи диодов, как это показано на рис..1А.3 Применяемые для этой цели диоды должны быть рассчитаны на протекание через них полного тока катода, а их максимально допустимое обратное напряжение должно быть не ненее напряжения накала. Этим требованиям отвечают практически все современные мощные диоды.

Включается БП нажатием кнопки S1 «ВКЛ.». При этом питание подается только на сетевую обмотку накального трансформатора Тр3. С этого же трансформатора получается напряжение для выпрямителей, питающих цепи управляющей сетки, сигнальные лампочки, реле и вентилятор. Использование отдельного трансформатора позволяет, вопервых, включать напряжение питания анода только при наличии напряжения накала и прогрева ламп, вовторых, сразу после включения напряжения накала лампа запирается отрицательным напряжением на управляющей сетке и втретьих, это позволяет использовать усилитель в дежурном режиме с выключением высокого напряжения при длительной работе радиостанции только на прием..

Все усилители снабжены вентиляторами для обдува ламп. Это может пригодиться в жаркое время года, при работе в соревнованиях, а также при работе RTTY, PACKET и т.д. Схема выпрямителя для питания вентилятора собрана на VD15, VD16 и C13, C14. Чтобы напряжение на вентиляторе при нагрузке было равно 12 В, емкость конденсаторов C13, C14 должна быть по 470 мкФ.

Вентилятор охлаждения включается либо одновременно с включением напряжения накала ламп, либо самостоятельно, нажатием кнопки S1 «ВЕНТ». В вариантах схемы усилителя на лампах, работающих только при принудительном охлаждении, используется вентилятор типа ВВФ 71М, имеющий относительно малые габариты и достаточную производительность - 45 куб. метров воздуха в час. В паспорте на металлостекляные и металлокерамические лампы сказано, что охлаждение на лампы должно подаваться до включения напряжения накала и прекращаться не ранее, чем через три минуты после выключения напряжения накала. Поэтому включение вентилятора производится автоматически при включении кнопки S2 «НАК», а при выключении напряжения накала в случае надобности вентилятор можно оставить включенным (для ламп, работающих с принудительным охлаждением), нажав кнопку S1 «ВЕНТ». Для удобства работы желающие могут параллельно кнопке включения вентилятора поставить термореле (например РБ 5-2) и тогда вентилятор будет автоматически включаться при достижении температуры 60 градусов. Для долголетней и бесшумной работы вентилятор необходимо обязательно периодически обслуживать: ежемесячно чистить и раз в полгода смазывать с разборкой (конечно, если смазка предусматривается ТУ на вентилятор).

Для получения анодного, экранного и напряжения смещения применены два трансформатора ТА262-127/220-50 Тр1 и Тр2, вторичные обмотки обоих трансформаторов включены последовательно. При нажатии кнопки S3 «АНОД» срабатывает реле К1, которое своими контактами подключает к сети (через предохранители FU1 и FU2) первичные обмотки трансформаторов.

Резисторы R1 и R2 служат для ограничения скачка тока заряда конденсаторов C1 - C8 при включении питания усилителя, их величина составляет 3 - 10 Ом. В схемах с трансформаторным питанием анода эдс самоиндукции вторичных обмоток анодных трансформаторов препятствует скачку тока при включении питания, поэтому величина R1 и R2 выбирается равной 3 – 4 Ом. В случае выполнения источника питания анодных цепей усилителя по бестрансформаторной схеме, нагрузка выпрямителя становится чисто емкостной. При этом значительно возрастает пусковой ток и при номиналах R1 и R2, равных 3 – 4 Ом, при включении источника их проводящий слой мгновенно испаряется, сами резисторы при этом даже не успевают потемнеть от нагрева. В данном случае номинал резисторов необходимо увеличитьь до 560 – 1200 Ом, а чтобы исключить на них падение напряжения в рабочем режиме, необходимо добавить пусковую схему, собранную на R26, C28, K1A, которая, после окончаниязаряда C1 - C8, закорачивает R1 и R2 (на рис.1 обозначена пунктиром). Величина R26, от которой зависит время включения К1А, подбирается при настройке.

Резисторы R3 - R6 наоборот служат для разряда C1 - C8 при выключении анодного напряжения. На резисторах R9 - R13 происходит падение напряжения до напряжения стабилизации стабилитронов VD11 - VD13, включенных в цепь экранной сетки. Величина резисторов выбирается исходя из тока стбилизации VD11 - VD13.

Резисторы RШ1 и RШ2 предназначены для измерения тока анода и экранной сетки соответственно. Сопротивление резисторов зависит от типа применяемых приборов. Так, для приборов типа М2001 с током полного отклонения 1,0 mА их сопротивления равны 0,28(0,14) и 2,8 Ом соответственно, при этом их шкалы будут соответствовать 500 (1.0 А) и 50 mА В базовой конструкции измерение тока экранной сетки не предусмотрено, т.к. это требует дополнительной коммутации прибора и резистор RШ2 стоит «на любителя».

Таблица 1. Рекомендации по замене анодных трансформаторов

Марка трансформатора

Соединение выводов вторичных обмоток трансформаторов

Напряжение на втор. обмотках трансформ.

Выпрям.напряж. анода В

Ток анодной обм. А

.Uраб.

В

C1 -C8

Номин.

R9-R13

кОм**

Сжема включения обмоток

№ выводов

Напр.

ПЛ 20´40 - 80 Pгаб. = 260 Вт

ТА264-127/220-50

12 и 13; 14 и 20; 19 и 18

11Тр.1- 17Тр.2

544

1478

0,445

450

120 кОм

Удвоен.

ТА265-127/220-50*

12 и 13; 14 и 20; 19 и 18

11Тр.1- 17Тр.2

584

1630

0,40

450

140 кОм

Удвоен.

ТА266-127/220-50*

12 и 13; 14 и 20; 19 и 18

11Тр.1- 17Тр.2

600

1680

0,40

450

140 кОм

Удвоен.

ТА267-127/220-50 *

 

 

698

980

0,72

350

82 кОм

Мостов.

ТА268-127/220-50 *

 

 

880

1064

0,66

350

91 кОМ

Мостов.

ТА269-127/220-50 *

 

 

948

1327

0,532

350

110 кОм

Мостов.

ТА270-127/220-50 *

 

 

880

1230

0,560

350

100 кОм

Мостов.

ПЛ 20´40 - 100 Pгаб. = 310 Вт ***

ТА274-127/220-50

12 и 13; 14 и 20; 19 и 18

 

544

1478

0,50

450

120 кОм

Удвоен.

ТА275-127/220-50 *

 

 

698

980

0,80

350

82 кОм

Мостов.

ТА268-127/220-50 *

 

 

880

1064

0,78

350

91 кОм

Мостов.

ТА277-127/220-50 *

 

 

948

1327

0,532

350

110 кОм

Мостов.

ТА280-127/220-50 *

 

 

1110

1554

0,57

450

130 кОм

Мостов.

* - При использовании трансформаторов данных типов схема выпрямителя выполняется по мостовой схеме без удвоения напряжения, диоды, применяемые в этом случае, должны быть рассчитаны на соответствующее напряжение.

** - Сопротивление подбирается до получения нормального тока стабилизации VD11-VD13.

*** - При использовании трансформаторов данных типов необходимо увеличить ширину шасси БП до 160мм и скорректировать расположение отверстий для крепления трансформаторов, скорректировать раскладку и длину проводов жгута, а также удлинить дет. 12 - дет.13 до 160мм. Соответственно изменяются размеры корпуса.

Таблица 2. Рекомендации по замене накальных трансформаторов (ТН)

 

Типономинал трансформатора

Номинальная мощность,

В·А

Ток первич-ной обмотки,А

Напряжение вторичной обмотки, В

Ток вторичной обмотки, А

Выводы обмоток

7-8

9-10

11-12(13)

14-15(16)

7-8

9-10

11-12(13)

14-15(16)

1

2

3

4

5

6

7

8

9

10

11

ТН45-127/220-50

58,0

0,53/0,32

6,3

6,3

5,0 (6,3)

5,0 (6,3)

2,64

2,16

0,95

0,95

ТН46-127/220-50

2,30

2,30

2,30

2,30

ТН47-127/220-50

0,92

3,50

2,40

2,40

ТН48-127/220-50

2,40

4,80

1,0

1,0

ТН49-127/220-50

77,0

0,68/0,40

1,43

4,90

2,90

2,90

ТН50-127/220-50

1,60

5,60

2,50

2,50

ТН51-127/220-50

1,50

1,50

4,70

4,70

ТН52-127/220-50

0,45

5,90

3,0

3,0

ТН53-127/220-50

78,0

0,68/0,40

0,82

3,20

5,70

5,70

ТН54-127/220-50

2,20

4,45

4,45

4,45

ТН55-127/220-50

0,76

0,76

7,0

7,0

ТН56-127/220-50

5,40

3,40

3,40

3,40

ТН57-127/220-50

1,64

3,0

5,50

5,50

Таблица 3. Рекомендации по замене трансформаторов (ТПП)

 

Типономинал трансформатора

Номинальная мощность,

В·А

Ток первич-ной обмотки,А

Напряжение вторичной обмотки, В

Ток вторичной обмотки, А

Выводы обмоток

11-12

13-14

15-16

17-18

19-20

21-22

1

2

3

4

5

6

7

8

9

10

ТПП278-127/220-50

72,0

0,72/0,42

5,0

5,0

10,0

10,0

1,35

1,35

2,20

ТПП279-127/220-50

5,0

5,0

20,0

20,0

5,0

5,0

1,20

ТПП280-127/220-50

10,0

10,0

9,93

9,93

2,64

2,64

1,60

ТПП281-127/220-50

10,0

10,0

20,0

20,0

2,62

2,62

1,10

ТПП287-127/220-50

90,0

0,90/0,530

5,0

5,0

10,0

10,0

2,63

2,63

2,55

ТПП288-127/220-50

5,0

5,0

20,0

20,0

1,33

1,33

1,70

Источник напряжения смещения управляющей сетки лампы также выполнен по схеме удвоения напряжения на диодах VD5, VD6 и конденсаторах C10, C11, далее напряжение смещения стабилизируется стабилитроном VD14. Переменные резисторы R22 и R23 предназначены для установки тока покоя ламп в режиме SSB и CW соответственно. Точное значение напряжения рабочей точки устанавливается по минимуму внеполосных излучений. Об этом следует помнить при замене ламп, величину тока покоя новой лампы следует устанавливать равной исходя из выше изложенного условия. Выбор режима производится переключателем S4 «SSB-CW».

Для сглаживания пульсаций анодного напряжения применены электролитические конденсаторы марки К50-20. Часто в литературе пишется, что их применение в связи с тяжелым тепловым режимом внутри корпуса усилителя нежелательно и приводятся многочисленные доводы. Однако двадцатилетний личный опыт обслуживания ЭВМ типа «Минск-32», «ЕС-1022» и «ЕС-1045», работающих круглосуточно месяцами без выключения питания доказал, что ведут себя они очень надежно. Единственное, чего не любят эти конденсаторы - так это длительного простоя без подачи напряжения. Так, что если при первоначальном включении усилителя или при его включении после длительного простоя (три месяца и более), Вам будут указывать на «фон», не волнуйтесь - пара дней работы в эфире и все встанет на свое место. Кроме того, конденсаторы отделены перегородкой от места установки ламп и практически не нагреваются. Вообще, перед установкой в схему, во избежание прострела, конденсаторы лучше всего отформовать, хотя бы потому, что они могут попасться 80-х или даже 70-х годов выпуска. Это делается либо перед установкой их в схему с помощью простейшей схемы, либо непосредственно в схеме (см. главу 5).

В розетку XP2 в случае возникновения необходимости можно включить трансивер, либо какое-нибудь вспомогательное устройство.

На разъем XP8 выведено напряжение + 24В (+ 12В), которое может быть использовано для подключения питания коммутатора антенн или, например, электронного ключа.

В БП для усилителя на 2-х ГИ-7Б для получения служебного напряжения применено два конденсатора (C12, C15), это сделано на тот случай, если, например Вы не достанете нужного трансформатора из серии ТН, а Вам попадется трансформатор, имеющий различные по току накальные обмотки, например ТН-56. При его применении для получения требуемого тока накала будет необходимо комбинировать обмотками. Для получения служебного напряжения Вы также легко перейдете на схему удвоения, используя только одну обмотку 6,3В, как это показано на рис.2А1 (это касается и других схем).

2. ОБЩЕЕ ОПИСАНИЕ СХЕМЫ УСИЛИТЕЛЯ

Для постройки усилителей лучше всего подходят те генераторные либо модуляторные лампы, у которых вывод анода расположен отдельно от других выводов и находится сверху. При такой конструкции лампы при монтаже усилителя проще разделить друг от друга анодные, сеточные и накальные цепи, что уменьшит вероятность их взаимного влияния, а соответственно и склонность усилителя к самовозбуждению при включении.

Принципиальная схема высокочастотной части усилителя мощности приведена на рис.2. Схема анодной части базового усилителя является общей для всех вариантов и выполнена по схеме параллельного питания. Анодный контур представляет собой традиционный П-контур, состоящий из диапазонных катушек L4 и L5, анодного конденсатора C20, конденсатора связи с антенной C21. Единственной особенностью схемы является включение антенны приемника в “горячий” конец П-контура выходного каскада, что дало дополнительную селективность сигнала на приеме. При таком включении появилась возможность настройки контура на передачу в “холодном” режиме. Это исключило режим перенапряжения усилителя при расстроенном контуре в режиме настройки, так как операция настройки производится чисто в режиме приема без подачи высокого напряжения и излучения сигнала в эфир, причем при этом настройки в режиме приема и передачи практически совпадают, небольшое различие наблюдается только на диапазоне 10 метров. Чтобы уменьшить "шум" лампы во время приема за счет остаточного тока через нее (иначе стабилитроны не будут работать, т.к. при малых токах просто, не выйдут на режим стабилизации), запирающее лампу отрицательное напряжение выбрано достаточно большим.

Эксперименты, проведенные при конструировании усилителей, показали, что при нормированном входном сопротивлении приемника (R вх). равном 75 (50) Ом, значение емкости конденсатора связи C19, включенного в "горячий" конец контура, должна быть не менее 15пФ. В противном случае сигнал на входе приемного тракта будет иметь большое затухание, однако при этом величина емкости конденсатора в диапазоне 10 метров становится соизмеримой с величиной емкости анодного конденсатора C20, что и приводит к некоторой разнице в настройках. Кроме того, суммарная емкость этих конденсаторов становится уже значительной для диапазона 10 метров, в связи с чем могут возникнуть трудности с настройкой контура на передачу, так как при передаче C19 подключается параллельно конденсатору C20, поэтому последний должен иметь как можно меньшую начальную емкость (за исключением варианта E).

От применения на входе усилителя широкополосных трансформаторов (ШПТ), повышающих входное напряжение возбуждения вдвое (для схем с общим катодом) пришлось отказаться. Были проведены многочисленные эксперименты, использовались кольца проницаемостью от 1000 до 20 ВЧ, изменялись число витков обмоток и шаг скрутки провода, для компенсации завала характеристики на ВЧ применялся последовательно включенный контур, изменялась схема включения обмоток ШПТ и все равно были получены примерно одни и те же результаты. Да, как трансформатор сопротивления во всем диапазоне он работает великолепно, но на частотах выше 11 мГц амплитуда сигнала начинала падать, а на 28 мГц ее уровень был в два раза ниже уровня входного сигнала, а учитывая снижение коэффициента усиления самих схем с ОК с ростом частоты, получили соответствующий результат. Таким образом, выяснилось, что одним ШПТ нельзя перекрыть полосу практически в 28 мГц, чего и следовало ожидать, применть же несколько ШПТ – получаем те же самые входные диапазонные контура. Но применение входных диапазонных контуров на входе усилителя сразу же значительно усложняет и удорожает его конструкцию. Это также приводит к усложнению и схемы коммутации, так в этом случае необходимо применение дополнительных реле для коммутации входных контуров, либо необходима их механическая связь с переключателем выходного П-контура, что в итоге ведет к затруднению повторяемости схемы малоквалифицированными радиолюбителями. Хотя конечно малоквалифицированный радиолюбитель с первой категорией – парадокс, но все же. Естественно, при желании Вы можете использовать оба варианта (заодно и самостоятельно проверить все вышесказанное). Схемы возможных вариантов подключения ШПТ на входе усилителя приведены на рис.2C2

Если Вы все же собираетесь поставить на входе усилителя диапазонные контура, либо планируете использовать совместно с усилителем трансиверы типа RA3AO, УРАЛ-84 либо аналогичные им, которые содержат широкополосные усилители небольшой мощности (до 5 Вт) и мощности которых недостаточно для раскачки мощного выходного каскада, а сооружать дополнительный каскад нет возможности из-за недостатка места в корпусе трансивера, в этом случае можно на входе усилителя установить полосовые фильтры. Лучше всего для этой цели использовать контура с индуктивной связью, которые вопервых, обеспечивают гальваническую развязку (что является обязятельным условием для бестрансформаторных схем) и, вовторых, - хорошую диапазонную фильтрацию. Схема входной части усилителя с такими фильтрами приведена на рис.2.22 (для схем с ОК) -2.24(для схем с ОС), а чертеж универсальной платы - на рис13Н.

В базовом варианте схемы усилителя отсутствует режим «ОБХОД», так как усилитель не предназначался для проведения местных связей. К тому же, вопервых, для проведения местных QSO существует телефон, СВ и 144 мГц, вовторых, в настоящее время даже почти все наши «home made» снабжены регуляторами выходной мощности и, втретьих, если динамика Радио Вашего корреспондента по дому не позволяет ему слушать Вас, можно побеседовать с ним просто сидя на лавочке во дворе (съэкономив "при этом QSO" на электроэнергию для связи с DX).

Если Вы все же хотите иметь в усилителе режим « ОБХОД », в схему ВЧ части усилителя необходимо внести изменения согласно рис.2.1 и рис.2.2, при этом на шасси БП (рис.11) дополнительно устанавливается реле К5, а на передней панели БП - реле К3 при помощи скобы поз.106. В этом случае, как в передней панели усилителя, так и в фальшпанели дополнительно сверлятся отверстия под кнопку S6 - «ОБХОД», делаются соответствующие изменения в схеме прокладки жгута.

Если, Вы не предусматриваете использование П-контура усилителя в приемном тракте, коммутация антенны осуществляется согласно рекомендациям, приведенным на рис.2.3. В этом случае реле К3 устанавливается на передней стенке БП при помощи скобы поз.106, отпадает необходимость в конденсаторе C19, а на перегородке ВЧ блока отверстия для крепежа К3 не сверлятся. Соответственно делаются изменения и в схеме прокладки жгута.

В случае использовании для работы с усилителем трансивера, в котором коммутация антенны с приема на передачу производится непосредственно в самом трансивере, в принципиальную схему ВЧ части усилителя необходимо внести изменения согласно рис.2.4 и рис.2.5. При этом разъем XP1 на задней панели усилителя (рис.4) не устанавливается и, соответственно отверстие под него не сверлится. На шасси БП (рис.11) дополнительно устанавливается реле К5 и вносятся соответствующие изменения в схеме прокладки жгута. Если на приеме П-контур усилителя не используется, в схему вносятся изменения согласно рис.2.5 и рис.2.6, а если при этом необходим еще и режим “ОБХОД” - согласно рис.2.6 и рис.2.2.

При использовании усилителя как совместно с трансивером, имеющим внутреннюю коммутацию антенны, так и с трансивером, имеющим раздельные гнезда приемной и передающей антенн, ВЧ часть усилителя выполняется согласно рис.2.7 и рис.2.8. На шасси БП устанавливается реле К5, реле К3 устанавливается на передней панели БП, на задней панели сверлится отверстие диам. 8мм для установки переключателя S7 “2 – 3”. Делаются соответствующие изменения в схеме прокладки жгута.

Если в данном варианте на приеме Пконтур усилителя не используется, ВЧ часть усилителя выполняется согласно рис.2.8 и рис.2.9, если при этом еще необходим и режим «ОБХОД», то на шасси БП дополнительно устанавливается реле К6, на передней панели устанавливается кнопка S6 «ОБХОД». Монтаж в этом случае ведется согласно рис.2.10 и рис.2.11.

Все усилители снабжены встроенными приборами, позволяющими в процессе эксплуатации контролировать состояние антенно-фидерного хозяйства (КСВ-метр), а также приблизительно измерять мощность на выходе усилителя. Для этой цели использована готовая и хорошо зарекомендовавшая себя схема В.А. Скрыпника, приведенная в книге «Приборы для контроля и налаживания радиолюбительской аппаратуры», только в отличие от автора в ней для удобства пользования прибором используются сразу два стрелочных индикатора. Первый из них показывает уровень падающей волны, а по второму сразу же можно оценить показания КСВ антенно-фидерной системы. Включается КСВ-метр нажатием кнопки S5.

Теперь отдельно хотелось бы выделить вопрос об использовании ламп, особенно старых годов производства. Опять же бытует мнение о том, что старые лампы, пролежавшие на складах десять и более лет, нельзя использовать в мощных каскадах, работающих при высоких напряжениях, т.к. возможен пробой либо разряд внутри лампы вследствие частичной потери ими из-за старости вакуума. Особенно охотно это мнение поддерживают перекупщики ламп (по известным причинам). Действительно, при длительном хранении ламп их детали и оболочка могут выделять некоторое количество газа. При этом неизбежно ухудшается вакуум, необходимый для устойчивой работы и обеспечения стабильных параметров ламп. Однако, в большинстве случаев можно улучшить вакуум внутри лампы и сделать ее вполне пригодной для работы путем специальной тренировки лампы. Поэтому при первом включении лампы после длительного хранения, а также после пребывания в нерабочем состоянии более полугода лампы необходимо обязательно подвергнуть тренировке, которую принято называть "жестчением".

При наличии искрового течеискателя проверку вакуума можно провести следующим образом: проводником с высокочастотным потенциалом от искрового течеискателя касаются одного из электродов лампы или стекляного баллона и наблюдают при этом характер свечения. Во избежание пробоя не следует касаться стекла в одном месте более 2-3 сек. Избегайте также попадания искры на места спаев металла со стеклом.

Степень вакуума определяется по следующим признакам:

а) отсутствие свечения или слабое поверхностное свечение (флоуресценция стекла) зеленого или голубого цвета указывает на наличие высокого вакуума;

в) объемное свечение газа голубого цвета указывает на то, что лампа "газная". Такая лампа до включения в рабочую схему должна быть предварительно подвергнута "жестчению";

с) объемное интенсивное свечение газа розового цвета указывает на то, что в лампу проникает воздух;

d) если между электродами внутри лампы проскакивает искра, то это указывает на наличие в лампе полного атмосферного давления.

Жестчение лампы можно производить либо непосредственно в усилителе, в котором лампа будет работать, либо в специальной установке, при наличии таковой.

Рекомендуется следующий порядок жестчения ламп :

  • Выдержать лампу при нормальном напряжении накала (без других питающих напряжений) 20-30 мин.
  • Включить отрицательное напряжение сетки.
  • Включить напряжение анода, не превышающее половины номинального значения, выдержать 5-10 мин и затем повышать его ступенями через 150 - 200 В до номинального значения, выдерживая на каждой ступени 5-10 мин. При приближении к номинальному значению напряжения время выдержки на каждой ступени следует немного увеличить (до 15-20 мин).
  • Если при повышении напряжения в лампе произойдет разряд, следует снизить напряжение на одну ступень, выдержать 10-15 мин и затем снова повышать напряжение ступенями до нормального. Отсутствие пробоев свидетельствует о том, что вакуум в лампе повысился.

    Для предохранения лампы от повреждений в случае пробоя в анодную цепь при жестчении необходимо включать сопротивление в 3-5 раз больше обычного ограничительного сопротивления, включаемого при нормальной работе лампы. В конце жестчения, при отсутствии разрядов, величину сопротивления следует уменьшить до номинального значения.

    При повышении напряжения необходимо следить за тем, чтобы мощности, рассеиваемые электродами, не превышали предельно допустимых значений. Регулировку тока анода можно производить изменением напряжения смещения сетки.

    После того, как напряжение анода доведено до номинального рабочего значения и в течение 20-30 мин не будет разрядов или каких-либо ненормальностей в работе лампы, рекомендуется увеличить напряжение анода на 5-10% выше номинала и выдержать 10-15 мин. После этого, при отсутствии разрядов, лампу можно включать в работу.

    Жестчение можно также производить в динамическом режиме. В этом случае лампа включается при пониженных значениях питающих напряжений и, после выдержки в течение 5-10 мин, напряжения и нагрузка медленно повышаются ступенями до нормальных значений.

    Включение полного напряжения анода должно производиться при настроенном контуре. В противном случае возможен выход лампы из строя вследствие пробоя. Если лампа при полной настройке после длительного хранения не отдает достаточной мощности, допускается кратковременное (не более чем на 5 мин.) повышение напряжения накала выше номинального на 15%.

    .В любом случае для долголетней и безотказной работы новые лампы необходимо подвергнуть тренировке. При первом включении новой лампы или после длительного перерыва в работе (более 10 суток) рекомендуется следующий порядок подготовки лампы к нормальной работе: включается накал; при нормальном напряжении накала (без других напряжений электродов) лампа выдерживается 15-20 мин. После этого можно включать напряжения анода и сеток. Желательно выдержать лампы 5-6 часов в режиме передачи при отсутствии сигнала возбуждения.

    ПРИМЕЧАНИЕ:

    1. Включение любых напряжений электродов должно производиться только после того, как напряжение и ток накала достигли номинальных значений.

    2.   Во время работы лампы напряжение накала должно быть постоянным и не должно превышать номинального значения. Даже небольшое повышение напряжения накала может значительно сократить срок службы лампы.

    3.   Выходная мощность и крутизна характеристики ламп могут уменьшаться к концу срока службы до 20% от нижнего предела нормы.

    4.   Превышение предельных режимов работы неизбежно влечет за собой преждевременный выход лампы из строя.

    Многократные включения и выключения накала ламп нежелательны, так как они способствуют деформации катода и могут сократить срок службы лампы. Поэтому при эксплуатации ламп с частыми периодическими перерывами в работе, рекомендуется на время перерыва не выключать накал, а еще лучше снижать его напряжение до 80 % от номинала.

    2. 1. СХЕМА КВ УСИЛИТЕЛЯ МОЩНОСТИ С ЗАЗЕМЛЕННЫМИ СЕТКАМИ (НА ЛАМПАХ ГИ-7Б, ГИ-7БТ, ГИ-6Б, ГС-9Б, ГС-90Б, ГИ-23Б,ГИ-46Б,ГУ-50, Г-811, ГК-71)

    Если выходная мощность Вашего трансивера составляет порядка 30 – 50 Вт, а трансивер не имеет регулировки уровня выходной мощности, лучший вариант в этом случае – постройка усилителя по схеме с общей сеткой (ОС).

    Усилители с общей сеткой могут работать в любом из режимов. Преимущества таких усилителей - хорошая линейность, высокие энергетические показатели и устойчивость, линейность работы в широком диапазоне, так как в схеме с ОС управляющая сетка является электростатическим экраном, размещенным между анодом и катодом, т.е. между входом и выходом и, создавая при этом хорошую развязку, позволяет повысить граничную частоту усиливаемых сигналов. К недостаткам следует отнести низкое входное сопротивление, вследствие чего схема имеет малый коэффициент усиления по мощности (Кр » 10-20 раз), поэтому для полной раскачки усилителя требуется большая подводимая мощность возбуждения. Лампы, предназначенные для линейного усиления сигналов в режиме АВ, в схеме с ОС использовать не рационально, так как при этом не используется их основное достоинство – высокий коэффициент усиления. Не рекомендуется использовать также те тетроды и пентоды, у которых лучеобразующие пластины либо третья сетка соответственно соединены с катодом внутри лампы, так как они склонны в данном включении к самовозбуждению.

    Лампа ГИ-7Б, ГИ-7БТ, ГИ-6Б, ГИ-23Б,ГИ-46Б, ГС-9Б (вариант А) Ниже приведенная схема предназначена для совместной работы с трансиверами, имеющими выходную мощность 20-40 ватт. Для работы с QRP или QRPP аппаратами на входе такого усилителя необходимо вклю-

    Рис. 1

    чить дополнительный предварительный усилитель. Cам усилитель выполнен на двух триодах ГИ-7Б (так как все выше перечисленные лампы имеют примерно одинаковые основные электрические параметры и геометрические размеры, рассматривается только схема усилителя на лампах ГИ-7Б) по гибридной схеме с заземленными сетками. Лампы ГИ-7Б в схемах с заземленной сеткой устойчиво работают на частотах до 500мГц.

    Лампы ГИ-6Б отличаются от ламп ГИ-7Б только верхней граничной частотой, при работе на КВ это не сказывается никоим образом. Кроме того, выбор этих ламп обусловлен следующим: лампы ГИ-7Б по стоимости являются самыми дешевыми лампами такого

    класса и, поэтому получили широкое распространение при постройке усилителей. К примеру, на рынках Украины их стоимость составляет всего 1 - 2 USD за шт., в то время как, например стоимость ГУ-72 - 15 USD, ГМИ-11 - 25 USD, ГУ-74Б - 25 USD, 6П45С – 3-4 USD. (данные приведены на лето 2000 года).

    Применение в усилителе двух ламп, включенных параллельно, позволяет получить гораздо больший анодный ток при сравнительно малой мощности возбуждения. Усилитель можно изготовить и на одной лампе, сохранив те же параметры (имеются в виду подводимая и отдаваемая мощности), при этом нагрузка на лампу возрастает, лампа работает при больших токах, что может привести к перегреву катода и сетки, следовательно, долговечность и надежность усилителя будет соответственно ниже, и кроме того, для получения той же выходной мощности необходимо увеличить мощность возбуждения. Для одной лампы ток покоя соответственно уменьшается в два раза, все остальные требования сохраняются.

    В катод лампы включен предварительный усилитель на полевом (бипланарном) транзисторе VT1, который подключается при необходимости в зависимости от выходной мощности трансивера при помощи реле К4, коэффициент усиления по мощности при этом возрастает. При коэффициенте усиления по мощности около 20 (13 dB) выходная мощность трансивера, используемого совместно с усилителем, должна быть 20-40 Вт. При включении предварительного усилителя коэффициент усиления возрастает до 100 (20 dB), поэтому требуемая мощность возбуждения снижается на порядок и составляет всего 3,0-5,0 Вт, т.е. в этом случае усилитель может эксплуатироваться практически с любым QRP трансивером (передатчиком). При эксплуатации данного усилителя возможны три варианта:

    a) предполагается постоянное использование усилителя мощности только с трансивером, имеющим мощность 20-40 Вт, при этом отпадает надобность в предварительном усилителе и реле К4. В этом случае установочные отверстия в шасси ВЧ-блока под реле К4, транзистор VT1, переменные резисторы R22, R23 не сверлятся.

    b) предполагается постоянное использование усилителя мощности только с QRP трансивером, имеющим мощность 3,0-5,0 Вт, отпадает надобность в реле К4. В этом случае не сверлятся. установочные отверстия под реле К4.

    c) предполагается использование усилителя мощности как с QRP трансивером, так и с трансивером, имеющим мощность 20-40 Вт. В этом случае в шасси сверлятся все отверстия. Причем, если Вы будете большую часть времени использовать усилитель с QRP трансивером, вход и выход предусилителя лучше распаять на замкнутые контакты реле К4 и соответственно, наоборот, если чаще будете работать с мощным трансивером, предусилитель распаивается на разамкнутые контакты реле К4, тоесть в любом случае К4 большую часть времени будет находиться в обесточенном состоянии.

    Следует сразу оговорить, что при постройке универсального усилителя нужно иметь в виду, что в приведенной схеме, в предварительном усилителе лучше всего использовать "токовые" транзисторы, т.е. транзисторы, отдающие максимальную мощность при низких напряжениях коллектора (стока). Это связано с тем, что при анодном напряжении 1300 В (1500 В), используемом в описанной схеме усилителя и токе покоя ламп, равном 50-90 мА, напряжение смещения для ламп ГИ-7Б составляет всего 14-15 В (20 - 22 В), но это же напряжение одновременно используется и для питания предварительного усилителя. Нормальное напряжение питания для КП904 составляет 40-50В, следовательно, получившейся величины напряжения смещения недостаточно для того, чтобы получить с транзистора максимальную мощность. Это замечание относится и ко многим другим транзисторам. Поэтому при данной величине анодного напряжения Вы не в полной мере используете преимущества гибридного каскада.

    Лучший выход из этой ситуации – применение отдельного источника для питания предварительного усилителя. Для этой цели можно использовать обмотки 15-19 и 21 - 22 трансформаторов Тр.1 и Тр.2 (на рис.1А показано пунктиром).В этом случае предварительный усилитель можно собрать по схеме рис.2.15, а для фильтрации пульсаций его напряжения питания в этом случае используется С15, правда, при этом необходимо увеличить его емкость. Для этой цели можно также применить отдельный небольшой силовой трансформатор.

    Рис.3 Плата предварительного уси- лителя на транзисторе КП904А .
     

    Рис. 4 Плата предварительного усилителя для работы с QRPP трансивером.

    В случае применения QRPP трансивера предварительный усилитель можно выполнить по схеме, описаной в [23], ее упрщенный вариант изображен на рис.2.14. В этом случае для получения полной выходной мощности достаточно около двух вольт раскачки, что обеспечит любой QRPP аппарат.

    Смещение на управляющих сетках ламп в ре жиме приема определяется цепочкой стабили-

    тронов VD1-VD4. В этом случае напряжение на катоде будет около + 80 В, при этом лампа надежно заперта. При переводе усилителя в режим передачи нажатием педали реле К2, включенное параллельно VD4, закорачивает его, уменьшая напряжение смещения на управляющих сетках, лампы открываются. Ток, протекающий через контакты реле на пиках анодного тока может достигать величины 1,0 А, поэтому в качестве этого реле необходимо применять реле, имеющие

    мощные контакты, например РЭС-47, РЭС-48, РЭН-34 и т.д. Эквивалентное сопротивление анодной нагрузки каскада около 1,3(1,5)кОм. Входное сопротивление каскада около 30 Ом, поэтому уже при входной мощности 40 Вт напряжение на входе усилителя составит около 35 В, а это приведет к появлению тока сетки на пиках входного сигнала, т.е усилитель переходит в класс АВ2, что вполне допустимо для режима SSB, поэтому при небольшом превышении напряжения смещения это не страшно, так как ток сетки незначителен по сравнению с общим входным током усилителя и вносимые при этом им иска-

    Рис.5 Плата БП предусилителя.
     

    Рис.6 Реле РЭН-34

    жения незначительны. При дальнейшем же увеличении уровня сигнала на входе усилителя, нелинейные искажения на выходе усилиителя возрастают (переменная составляющая анодного напряжения принимает импульсный характер, поэтому на выходе появляются гармоники), так что лучше придерживаться расчетного режима. В случае применении гибридного каскада лишнее напряжение возбуждения легко гасится уменьшением величины R23. Точно так же при недостатке напряжения возбуждения величину R23 можно увеличить. Переменный резистор R22 служит для подстройки тока покоя при замене ламп.

     

    Для лампы ГИ-7Б, мощность, рассеиваемая анодом лампы, достаточно большая и составляет 350 Вт. И хотя некоторые авторы пишут, например [20], что в «легком режиме» лампы могут работать и без принудительного обдува, не рекомендую использовать их в этом режиме. По этой же причине, провода, идущие от накального дросселя к хомутам крепления выводов подогревателя и катода, должны быть к ним припаяны только тугоплавким припоем, а еще лучше надежно прикручены винтами через шайбы, а не припаяны, так как в случае перегрева лампы, провода могут просто отпаяться. Такие же требования предъявляются и к монтажу анодных цепей (особенно это касается работы в соревнованиях, когда большую часть времени усилитель находится в режиме передачи и происходит максимальное выделение тепла).

    Лампа ГУ-50.(вариант F). Пентод ГУ-50 в схеме с ОК изза малой крутизны использовать нецелесообразно (если на входе не применяется предварительный усилитель). Наилучший вариант – использование ее в схеме с ОС. В схеме же с ОС правильный выбор рабочей точки позволяет уменьшить ток покоя лампы до 10-15 mA по сравнеию со схемой ОК, где он составляет 40-60 ma , при этом нагрев лампы в паузах уменьшается, а КПД каскада и соответственно выходная мощность растут, режим лампы приближается к режиму В. в данном случае лампа отдает нибольшую мощность – до 110 Вт (по паспорту !).

    Схема выполнена на 3-х лампах (можно применить и четыре). Лампа неудобна тем, что анодные и сеточные выводы у нее расположены вместе, что создает неудобство при монтаже. Если Вы сведете вместе аноды, неудобно разводить входные цепи и соответственно наоборот. Поиск выхода из этого положения привел к решению выполнения монтажа подвальной части ВЧ-блока в два этажа (см. рис.12E3 и рис.12Е4). Анодные и сеточные цепи разделены пластиной-экраном поз.106, для изоляции анодных цепей от шасси усилителя. служит пластина поз.106А. В связи с тем, что аноды лампы находятся снизу, пришлось перекомпоновать и расположение элементов выходного П-контура («перевернуть» весь монтаж), немного перекомпанована и передняя панель. При выполнении слесарных работ будьте внимательны. В остальном, схема особенностей не имеет.

    В схеме с ОС возможны два варианта включения лампы :

    а) с сетками, заземленными по ВЧ (вариант F2), т.е. с наличием номинальных постоянных напяжений на сетках;

    в) все сетки непосредственно соединены с корпусом (вариант F1), при этом лампа превращается в триод с высоким коэффициентом усиления. Так как все сетки соединены с корпусом, усилитель становится очень устойчивым, а его линейность ничем не отличается от усилителя с номинальными постоянными напяжениями на сетках. Кроме того, при таком включении пентода не нужны дополнительные источники стабилизированногго напряжения для экранной и управляющей сеток, но зато для этой схемы требуется бóльшая мощность возбуждения и токи сеток, соединенных вместе, возрастают, причем основная часть тока приходится на управляющую сетку.

     

    Лампа Г-811.(вариант H). Долго не хотелось заниматься этим вариантом, так как лампа по своим размерам не вписывается в корпус, используемый для остальных вариантов усилителей. Но по просьбе друзей пришлось изготовить и этот вариант. Для нормального размещения четырех ламп и соблюдения при этом нормального температурного режима внутри лампового отсека пришлось увеличить его ширину и высоту на 30 мм (на всех чертежах размеры деталей для данного варианта усилителя приведены в скобках). Усилитель можно выполнить на двух, трех и четырех лампах, от числа параллельно включенных ламп зависит входное сопротивление усилителя. Дело в том, что эти лампы имеют малую входную емкость, поэтому их и удобно использовать в параллельном включении. Кроме того, они имеют малое сопротивление анодной нагрузки, что дает выигрыш на высокочастотных диапазонах. Схема усилителя приведена на рис. 2D.3. При повторении усилителя вместо отечественных ламп Г-811 использовать ее зарубежный аналог - лампы 811-А.

    Лампа ГК-71.(вариант I).Отличие данной схемы том, что для согласования высокого входного сопротивления лампы применен трансформатор типа ШПТЛ. Данное схемотехническое решение упрощает конструкцию усилителя, исключая применение переключаемых входных П-контуров на каждый диапазон. Для полной раскачки необхолима мощность порядка 70 ватт, для этой цели подойдет UW3DI. Для получения выходных параметров, необходимо использовать для питания анода схему умножения напряжения на шесть.

    Как уже отмечалось выше, усилители, построенные по схеме с ОС, имеют низкое входное сопротивление Rвх., что усложняет согласование входа усилителя с выходом трансивера (передатчика) при совместном их использовании. Причем Rвх. зависит, как от диапазона, так и от количества параллельно включенных ламп. С увеличением количества ламп Rвх. уменьшается. Несогласованность ведет к тому, что для нормальной раскачки усилителя передатчик должен иметь запас по мощности. Самый простой выход из этого положения – согласование с использованием на входе усилителя ВЧ автотрансформатора (см. Рис.2.19). Трансформатор наматываеся на ферритовом кольце проницаемостью 50ВЧ и содержит 10-15 витков (я обычно мотаю 12). Диаметр кольца 20-30 мм (в зависимости от входной мощности), диаметр провода – 0,6-0,8 мм. Положение отвода подбирается по максимальному согласованию на всех диапазонах. Первоначально отвод берется от 7-8 витка, считая от заземленного конца обмотки трансформатора. Аналогично согласуется и вход усилителя, выполненного с бестрансформаторным источником анодного напряжения. В этом случае используется трансформаторное включение обмоток и согласование осуществляется изменением числа витков входной обмотки.

     

    2. 2 КВ УСИЛИТЕЛЬ МОЩНОСТИ ПО СХЕМЕ С ОБЩИМ КАТОДОМ (НА ЛАМПАХ ГУ-72, ГМИ-11, ГУ-74Б, 6П45С, ГУ-50, Г-807)

    Схемы всех приводимых усилителей построены по схеме с общим катодом (ОК). Схема с общим катодом имеет большое входное сопротивление, поэтому для ее возбуждения достаточно небольшой мощности. Такое включение лампы позволяет получить большой коэффициент усиления по мощности (Кр), поэтому при выходной мощности Вашего аппарата 5 – 20 Вт лучше избрать этот вариант. Схема легко согласуется с предыдущими каскадами. Однако, слишком большое значение Кр может привести либо к неустойчивой работе УМ, либо к его самовозбуждению, так что при монтаже ВЧ части усилителя необходимо соблюсти все требования. Кроме того, с увеличением рабочей частоты Кр падает, поэтому в трансивере необходимо предусмотреть некоторый запас по мощности для получения требуемой выходной мощности усилителя на ВЧ диапазонах.

    Непосредственно на входе усилителя включено нагрузочное сопротивление равное выходному сопротивлению трансивера 75 либо 50 Ом, которое улучшает устойчивость усилителя к самовозбуждению и одновременно является нагрузкой для трансивера. На этом резисторе падает часть мощности трансивера (около 20 %). Усилитель устойчиво работает и без него, но при этом могут возникнуть проблемы с согласованием некоторых типов импортных трансиверов, имеющих систему ALC. Рассеиваемая сопротивлением мощность составляет 8 Вт, при подаче на вход усилителя мощности превышающей зто значение, следует увеличить и мощность сопротивления (набрав их из большего числа резисторов).

     

    Лампа ГУ-72.(вариант В) Усилитель работает в классе АВ1 при работе в режиме SSB, AM и классе С при работе в режиме CW и RTTY. Мощность, необходимая для раскачки усилителя сос тавляет 8-12 Вт. Режим лампы в зависимости от рода работы устанавливается автоматически выбором смещения на управляющей сетке лампы при помощи реле К2, управляемым переключателем рода работы S4 «SSB - CW». В режиме приема на управляющую сетку лампы усилиителя мощности со стабилитрона VD14 подается отрицательное напряжение -100В, лампы усилителя надежно заперты. При замыкании контактов 1 и 2 разъема XP3 (Педаль) срабатывают реле К2 и К3. Реле К3 своими контактами 4.5 отключает антенну от входа приемника, а контактами 2,3 переводит трансивер в режим передачи.

    Контактами реле К2 подключается делитель напряжения R22 или R23 (в зависимости от выбранного режима излучения) и отрицательное напряжение на управляющей сетке уменьшается до нужной величины, соответствующей току покоя лампы в данном режиме

    Основным достоинством тетродов ГУ-72 является то, что анод лампы не требует принудительного обдува, в то время, как допустимая мощность, рассеиваемая анодом лампы составляет 85 Вт, поэтому с усилителя, выполненного на двух лампах, без применения дополнительных мер по их охлаждению можно снимать мощность до 350 Вт.

    Рис. 7 Усилитель с трансформаторным питанием на 2-х лампах ГУ-72.

    Если же мощность трансивера, используемого Вами составляет порядка 25-30 Вт, а трансивер не имеет регулировки уровня выходной мощности, то для предотвращения перекачки усилителя по входу, лучше собрать его по схеме с ОС (в данном случае с сетками, заземленными по ВЧ), как это показано на рис.2.B (вариант С1). В таком варианте включения лампы выходная мощность усилителя получается процентов на тридцать больше по сравнению с усилителем, выполненным по схеме с ОК. Монтаж усилителя приведен на рис.16.6.

    Лампа ГМИ-11 (вариант С)Импульсный генераторный тетрод ГМИ-11 при достаточно малом токе накала (всего 1,75А при Uн=26В) обладает отличными характеристиками. Ток анода лампы в импульсе составляет > 14 А, максимально допустимое напряжение анода 10 кВ. При этом ее, как и лампу ГУ-72, не надо обдувать. Эту лампу тяжело «загнать» даже любителям длительного «нажатия» при настройке своих «power¢ов» прямо в эфире и испытывающих от этого огромное блаженство, правда, при этом надо еще правильно выбрать частоту, например редкого DX, ведь здесь многие сразу оценят мощность и качество работы Вашего замечательного PA, о чем, кстати, Вам сразу и тут же в корректной и лестной форме и сообщат.

    Рис. 8 Усилитель с трансформаторным питанием на лампе ГМИ-11.

    Схемотехника усилителя на лампе ГМИ-11 практически ничем не отличается от схемы варианта B, только используется одна лампа. Расположение выводов лампы полностью совпадает с ГУ-72, и поэтому при некотором изменении конструкции усилителя, собранного по схеме варианта B, в нем можно использовать две лампы ГМИ-11, правда при этом следует помнить о тепловом режиме внутри корпуса усилителя и мощности источника анодного напряжения.

    Лампу можно использовать и в усилителе по схеме с ОС, собрав его по схеме, приведенной на рис.2.B (вариант С1). Монтаж усилителя приведен на рис.16.11.

     

     

    Лампа ГУ-74Б (вариант D) Аналогично предыдущим выполнена схема и на лампе ГУ-74Б, отличие состоит в том, что вентилятор обдува лампы включается вместе с включением усилителя. Вентилятор имеет производительность около 120 м³/час, в то время как для обдува лампы требуется всего 35 м³/час, это позволяет разместить его сбоку лампы, но в корпусе достаточно места, чтобы установить его и сверху. Эта лампа специально предназначена для усиления однополосных сигналов (ОМ), поэтому увеличение напряжения смещения по сравнению с оптимальным в целях снижения тока покоя в данной схеме нежелательно. При этом искривляется колебательная характеристика в области малых входных сигналов. Этот режим аналогичен ограничению телефонного сигнала снизу, что приводит к ухудшению разборчивости сигнала, росту нелинейных искажений и внеполосных излучений, поэтому применение этих ламп теряет всякий смысл. Исходя из этого при наладке, устанавливая ток покоя лампы, следует помнить, что он составляет 300 mA в режиме SSB. Данную лампу также можно использовать в варианте усилителя, собранного по схеме с ОС.

    Лампа 6П45С, 6П42С, 6П36С (варианты Е). Некоторые радиолюбители опасаются применять ТВ лампы строчной развёртки в усилителях мощности из-за их термической “хрупкости”, другие заявляют, что такие лампы не годятся для усиления SSB. Конечно, доля правды в этих двух утверждениях есть. Термическую “хрупкость” (неспособность длительно выдерживать повышенный нагрев) можно просто исключить, производя настройку усилителя короткими циклами (не держа ключ нажатым до тех пор, пока лампа станет сначала малиновой, а потом посинеет) либо, используя «холодную настройку» выходного каскада. Ограничение времени непрерывной работы ламп вызваны тем, что ТВ лампы предназначены для импульсной работы с довольно большими амплитудами токов, но при их малой длительности, а не с постоянно действующими токами, поддерживающими лампу в открытом состоянии длительное время.Тем не менее, ТВ лампы вполне удовлетворяют требованиям как профессиональной, так и любительской аппаратуры связи, при использовании “прерывистых” (не постоянно действующих) сигналов: CW, SSB.

    Прежде чем приступить к сборке и отладке этого варианта, был собран усилитель на двух лампах, опубликованный в [24], причем были опробованы два варианта, как с раскачкой в катод, так и в сетку. При анодном напряжении 750 В и мощности на входе усилителя 7-10 Вт (при раскачке в сетку) практически на всех диапазонах был получен анодный ток 600 mA.

    В результате проведенных экспериментов было установлено, что напряжение на экранных сетках ламп должно составлять 180 - 200 В, так, как того и требует паспорт на лампу. При дальнейшем увеличении напряжения на второй сетке, при переводе усилителя в режим передачи даже без подачи напряжения возбуждения, лампы начинают самопроизвольно открываться, ток анода возрастает до 1,0 А и более, аноды ламп при этом мгновенно становятся малиновыми.

    Конечно, анодного напряжения 1330 В, для ламп 6П45С пожалуй несколько многовато, но зато при таком напряжении сопротивление нагрузки (Rэ) получается бОльшим чем в усилителе, описанным автором, что позволяет получить гораздо меньшие значения емкостей П-контура. И все же в усилителе на лампах 6П45С сопротивления нагрузки получается достаточно низким, что требует соответственно большой величины анодного конденсатора переменной емкости. При отсутствии возможности приобретения такого конденсатора, можно составить его из двух, «подстегивая» к основному на каждом диапазоне (естественно там, где не будет хватать емкости основного конденсатора) конденсатор постоянной емкости либо вообще заменить его набором конденсаторов постоянной емкости, коммутируемых с помощью переключателя диапазонов. В этом случае для точной настройки анодного контура в резонанс в качестве индуктивности П-контура можно использовать шаровой вариометр. По габаритам и значению индуктивности очень хорошо подходит вариометр от радиостанции Р-140 (ЯР4.773.022).

    В большинстве ламп, предназначеных для работы в строчной развертке, междуэлектродные расстояния достаточно большие, что позволяет использовать их при повышенном анодном напряжении. Накопленный практический опыт подтвердил, что такие лампы можно форсировать со снижением срока их службы. при анодном напряжении 1000 В и выше и при токах намного превышающих паспортные допустимые значения. Просто лампы придётся менять чаще, чем при работе в пределах паспортных режимов, но зато их можно найти практически на любом рынке и стоят они дешевле генераторных ламп. Кроме того, по Вашему усмотрению всегда можно уменьшить величину анодного напряжения, перепаяв для этого отводы на вторичных обмотках анодных трансформаторов.

    При изготовлении усилителя следует иметь в виду, что мощность, потребляемая каждой лампой (6П45С) по накалу составляет 18 Вт, следовательно для питания четырех ламп при Uн = 6,3 В необходимо получать с трансформатора 10А, что несколько проблемотично при сохранении малых габаритов накального трансформатора, поэтому, с целью возможности использования стандартного трансформатора серии ТН подходящего размера, нити накала ламп включены попарно последовательно. Без разницы, какого типа Вы выбрали лампы для своего усилителя, при параллельном включении ламп, у Вас могут (вернее, обязательно возникнут!) возникнуть специфические проблемы.

    Предметом особого внимания следует считать анодный ток, получаемый от каждой лампы в связке. Динамический баланс существенен, так как важно, чтобы ни одна из ламп в комбинации не “садила” остальные. Если, например, мы включим параллельно четыре лампы 6П45С, имеющих различную крутизну характеристики, то при работе на передачу одни из этих ламп будут являться нагрузкой для других, другие будут раскачиваться больше вплоть до тока насыщения, что приведет к их перегреву, а в целом соответственно к снижению КПД каскада, т.е.к уменьшению выходной мощности. Результатом такой работы может стать перегрев ламп, их аноды вместе со стеклянным баллонами могут расплавиться, а последние могут и просто треснуть.

    При изготовлении данного варианта усилителя, лампы перед установкой в схему, предварительно должны быть отобраны, либо при настройке усилителя подстройкой напряжения смещения при полной раскачке усилителя устанавливаются одинаковые анодные токи ламп (каждой индивидуально). Токи покоя ламп, как правило, получаются неодинаковыми, но они чересчур малы, чтобы повлиять на линейность усилителя в целом либо на долговечность ламп.

    Это, кстати, касается и всех других ламп, если Вы используете более двух в параллельном включении. Идеальный случай - это подбор ламп также и по крутизне характеристики. Для любителя это решение нельзя назвать удачным, так как требуется большое количество “материала”, из которого можно “выбрать” лампы для использования в РА (как правило, таких запасов радиолюбители не имеют), это может позволить себе не каждый.

    Другой трудностью, встречающейся при параллельном использовании ламп, является заметное увеличение входной и выходной ёмкости. Нет необходимости говорить, что при увеличении любой из этих величин, будет больше проявляться эффект шунтирования по РЧ, упомянутый ранее. Определённые и жёсткие ограничения на значение верхней частотной границы также появляются при соединении ламп в РА параллельно.

    Например, паспортное значение входной ёмкости лампы 6П45С составляет 40 пФ, выходной – 16 пФ. Четыре лампы, включенные параллельно дадут входную ёмкость 240 пФ, выходную – 96 пФ. Выходная ёмкость может быть абсорбирована схемой анодного контура (включена в его схему, нейтрализована), а, вот, со входной ёмкостью придётся обходиться с помощью согласующего устройства, т. е., ничуть не лучшим образом, чем это делается сейчас в усилителях мощности ВЧ на транзисторах.

    Компания Galaxy представила 2 кВт (РЕР) усилитель мощности (модель 2000+), в котором применялось 10 ламп строчной развёртки, включенных параллельно. Усилитель работал в классе АВ1, “раскачивался” через мощный безиндуктивный резистор и был выполнен по схеме включения ламп “с общим катодом”.

    Поскольку лучеобразующие пластины ламп 6П45С (из этой сериитолько ее!) не имеют соединения с катодом внутри корпуса лампы, можно использовать их и в схеме с ОС, причем в обоих вариантах: как с сетками, заземленными по ВЧ, т.е. с номинальными постоянными напряжениями на сетках; так и сетками, непосредственно соединенными с корпусом, как это сделано например в [24]. Схема включения приведена на рис.2B (варианты Е1 – Е2), а монтаж ВЧ части на рис.16.17, рис.16.18 соответственно..

    ПРИМЕЧАНИЕ: Так как проводник, соединяющий внутри лампы 6П45С анод лампы с анодным колпачком, выполнен из тонкой медной проволоки, которая может отпаяться либо просто расплавиться при использовании ламп в режиме максимальной мощности Вашего РА, особенно это касается работы на ВЧ диапазонах, усилитель необходимо снабдить принудительной вытяжкой, используя для этой цели вентиляторы от блоков питания ПЭВМ.

    Лампа Г-807 (варианты G). Как показала многолетняя практика использования ламп Г-807, они отлично работают как в режиме класса С при использовании в телеграфном режиме, так и режиме класса АВ1 при усилении однополосного сигнала. Чтобы лампы не перегревались при этом, наиболее благоприятный режим работы для ламп (иметсяя в виду для четырех ) Uа = 1200В, Uс2 = 300В (CW), Uс2 = 350-400В(SSB),Uс1 = - 100В, Iа = 80-100 на лампу. Rэ при этом составляет около 3,3 кОм. То-есть наш источник питания как раз удолетворяет всем этим требованиям. При таких режимах лампы сохранят свою гарантированную работоспособность более 1500 часов.

    Схема построения усилителя приведена на рис.2B (варианты G1 – G2), а монтаж ВЧ части на рис.16.24, рис.16.30 соответственно.

     

    2. 3 ДВУХТАКТНЫЙ КВ УСИЛИТЕЛЬ МОЩНОСТИ ( НА ЛАМПАХ ГУ-72, 6П45С, 6П42С, 6П36С, ГУ-50, Г-807, Г-811 )

    К преимуществам построения схемы усилителя по двухтактной схеме следует отнести следующее:

    a)      более высокая линейность и экономичность, по сравнению с однотактными усилителями; b)      гораздо меньший по сравнению с однотактными усилителями уровень излучения четных гармоник; c)      последовательное включение входной и выходной емкостей лампы к соответствующим им контурам, что уменьшает начальную емкость этих контуров; d)      уменьшение напряжения анодного источника вдвое по сравнению с обычной схемой включения для получения равных мощностей; e)      уменьшение амплитуды выходного сигнала вдвое, что позволяет уменьшить требования к зазору конденсатора «горячего» конца выходного П-контура   Недостатки ддвухтактной схемы:   a)      необходимость подбора близких по параметрам ламп; b)      удвоение эквивалентного сопротивления выходного контура, что может оказывать сильное влияние на верхних диапазонах.

    В усилителе, построенном по двухтактной схеме, напряжение возбуждения на сетки ламп подается противофазно (т.е. со сдвигом на 180°) с противоположных концов входного трансформатора. Аналогично подключены аноды ламп. Выходной контур усилителя включен во вторичную обмотку выходного трансформатора. При симметрии схемы токи нечетных гармоник складываются на нагрузке, токи же четных гармоник компенсируются. Средние точки обмоток трансформаторов имеют нулевой потенциал (по высокой частоте), поэтому к ним соответственно подключают напряжение смещения и напряжение анода. Однако в связиа присутствия на них некоторого ВЧ-напряжения, связанного с неполной симметрией схемы их (средние точки) нельзя заземлять.

    Усилитель, выполненный по двухтактной схеме, может работать как в схемах с ОС, так и в схемах с ОК.

    Схема






    Рекомендуемый контент




    Copyright © 2010-2017 housea.ru. Контакты: info@housea.ru При использовании материалов веб-сайта Домашнее Радио, гиперссылка на источник обязательна.