Журнал "Новости Электроники", номер 12, 2008 год.

Журнал "Новости Электроники", номер 12, 2008 год.Наследие IR: мощные МОП-транзисторы HEXFETКонстантин Староверов В статье приводится обзор производственной линии мощных МОП-транзисторов HEXFET, приобретенной Vishay у International Rectifier, а также даются общие рекомендации по выбору и возможным применениям различных групп транзисторов.

 

Оценивая масштабы использования МОП-технологий в современной электронной технике, сейчас трудно представить, сколь драматична была история их становления, ведь даже через 30 лет после выхода в конце 1920-х годов первых теоретических работ физика Джулиуса Лилинфельда полевой транзистор можно было наблюдать только как лабораторный курьез. Именно так, в порядке лабораторного курьеза, появился первый МОП-транзистор с металлическим затвором исследователя из Bell Labs доктора Джона Аталла. Однако если на разработку практически пригодных маломощных МОП-транзисторов понадобится лишь несколько лет, то до появления первых мощных МОП-транзисторов пройдет еще 16 лет. Первые в мире мощные МОП-транзисторы, выполненные по технологии MOSPOWER®, представила компания Siliconix в 1976 году, а чуть позже, в 1979 году, компания International Rectifier предложила альтернативную МОП-структуру для построения мощных транзисторов, которая получила название HEXFET®. Так случилось, что именно эти две легендарные компании предопределили развитие мощных МОП-транзисторов в последующие десятилетия и именно они сейчас тесно связаны с другой не менее известной компанией Vishay. В 2005 году было завершено полное присоединение Siliconix к Vishay, начатое еще в 1998 году, а в 2007 году Vishay приобрела производственную линию силовых полупроводников International Rectifier, в которую вошли и популярные HEXFET-транзисторы. МОП-транзисторы Vishay из производственной линии IR представлены на рисунке 1.

 

 

Рис. 1. Корпуса МОП-транзисторов Vishay из производственной линии International Rectifier

Структура HEXFET подразумевает организацию в одном кристалле тысяч параллельно-включенных МОП-транзисторных ячеек, образующих шестиугольник. Такое решение позволило существенно снизить сопротивление открытого канала RDS(on) и сделало возможным коммутацию больших токов. С точки зрения классификации полевых транзисторов HEXFET относятся к полевым транзисторам с индуцированным каналом, т.е. работают в режиме обогащения канала неосновными носителями, что приводит к инверсии его проводимости. Такие транзисторы открываются только при подаче определенного напряжения между затвором и истоком. Полярность этого напряжения зависит от типа проводимости канала в открытом состоянии. У n-канальных транзисторов это напряжение положительное, а у p-канальных - отрицательное. Напряжение между затвором и истоком, способное вызвать протекание тока между стоком и истоком называется пороговым (VGS(TH)).

Обычно при использовании в качестве коммутаторов, p-канальные транзисторы включаются в разрыв положительной линии питания, при этом ток через них вытекает в нагрузку, а n-канальные - в разрыв отрицательной (или общей) линии питания и ток в них втекает из нагрузки. Однако, ввиду того, что p-канальные транзисторы сопоставимого класса с n-канальными обычно более дорогостоящие и ассортимент их гораздо хуже, в ряде применений общепринято использовать n-канальные и для коммутации в положительной линии питания. Для этого необходимо сток транзистора соединить с положительным питанием, исток - с нагрузкой и, самое сложное, создавать положительное отпирающее напряжение между затвором и «плавающим» при коммутации истоком. Для решения последней задачи выпускаются специальные «high-side» драйверные каскады. Описанный вариант использования n-канальных транзисторов широко используется в полумостовых и полномостовых силовых каскадах регулируемых электроприводов и импульсных преобразователей напряжения.

В приобретенный Vishay ассортимент HEXFET-транзисторов вошли дискретные транзисторы n- и p-типа в различных корпусах, в т.ч. изолированных и для поверхностного монтажа (SMT). Транзисторы охватывают широкий диапазон напряжений (до 1000 В) и тока (до 70 А), и могут использоваться во всех типичных для мощных МОП-транзисторов применениях. К ним относятся:

коммутаторы в импульсных источниках питания и DC/DC-преобразователях, в т.ч. каскады синхронного выпрямления (как альтернатива диоду Шоттки с меньшими потерями мощности) и каскады коррекции коэффициента мощности; схемы коммутации и распределения электропитания; схемы выравнивания токов параллельно-работающих каналов; схемы защиты батарейных источников от протекания реверсного тока, зарядные устройства, схемы балансировки многоэлементных аккумуляторных батарей; схемы управления электродвигателями; усилители мощности звуковых частот; линейные стабилизаторы напряжения, в т.ч. LDO-типа; мощные источники тока; ключи общего назначения (например, для управления мощной светодиодной нагрузкой, электромагнитными реле, электромагнитами и т.п.).

При выборе HEXFET-транзистора по напряжению и току важно понимать, что приводимые в справочных таблицах и документации максимальное рабочее напряжение (напряжение пробоя сток-исток V(BR)DSS)) и максимальный ток стока ID носят классификационный характер и не могут служит окончательным основанием для выбора транзистора. Значение V(BR)DSS) характеризует гарантированное напряжение, при котором не наступит электрического пробоя транзистора, а значение максимального тока ID показывает, до какой величины тока при заданных напряжении затвор-исток и температуре корпуса температура перехода кристалла будет находиться в допустимых границах. Эти данные можно использовать как ориентир, а окончательное решение о выборе транзистора необходимо принимать только руководствуясь графиками области безопасной работы (ОБР) транзистора для статического или импульсного режима работы, которые приводятся в документации. Например, транзистор IRFB11N50A классифицирован на максимальные напряжение 500 В и ток 11 А, но даже в импульсом режиме (длительность проводящего состояния 10 мс) при максимальном напряжении он способен надежно коммутировать гораздо меньший ток (менее 1 А). Величина тока стока также может быть ограничена максимальной температурой кристалла. Чтобы проверить, имеет ли место это ограничение, необходимо выполнить тепловой расчет.

TJ = TA + PDЧRqJA,

где TJ - температура перехода, TA - температура окружающей среды, PD - рассеиваемая транзистором мощность, RqJA - тепловое сопротивление «переход - окружающая среда».

Величина рассеиваемой мощности в статических и низкочастотных коммутаторах главным образом зависит от потерь проводимости в канале, т.е. PD = ID2ЧRDS(on)ЧD, где RDS(on) - сопротивление канала в открытом состоянии, а D - коэффициент заполнения импульсов (для статического коммутатора D = 1). В более высокочастотных применениях у рассеиваемой мощности также появляется динамическая составляющая, которая зависит от частоты коммутации и величины заряда затвора QG, от которого зависит, сколь долго будет происходить включение и отключение транзистора, и выходной емкости COSS. Более подробно методика расчета потерь мощности в МОП-транзисторах уже рассматривалась на страницах НЭ [1], поэтому, детали здесь опускаются. Если полученное значение TJ окажется выше предельно допустимого для выбранного транзистора значения или значения, оговоренного техническим заданием, то необходимо выполнить одно из следующих действий вплоть до соблюдения данного условия:

снизить ток стока, например, параллельным включением транзисторов; выбрать транзистор с более низкими RDS(on) и, при необходимости, QG/COSS; выбрать подобный транзистор, но в корпусе с улучшенными теплорассеивающими свойствами (например, то TO-247 вместо ТО-220); применить теплоотвод.

 

МОП-транзисторы в корпусах для поверхностного монтажа

МОП-транзисторы в SMT-корпусах являются идеальными кандидатами для использования в применениях, где теплорассеивающих свойств корпуса и печатной платы будет достаточно для соблюдения допустимого теплового режима транзистора. В приобретенном Vishay ассортименте транзисторов имеются приборы в SMT корпусах трех типов: D-PAK, D2-PAK и SOT-223. Сориентироваться в выборе транзисторов поможет таблица 1.

Таблица 1. Мощные МОП-транзисторы Vishay из производственной линии International Rectifier в SMT-корпусах ID** (TC = 25°C), А






Рекомендуемый контент




Copyright © 2010-2017 housea.ru. Контакты: info@housea.ru При использовании материалов веб-сайта Домашнее Радио, гиперссылка на источник обязательна.