Малошумящие низкочастотные усилители

Существует немало усилителей, для которых одним из основных необходимых параметров является требование обеспечить минимальный шум на выходе. Обычно такие схемы используются для усиления сигналов от различных датчиков, а также в приемниках прямого преобразования, где основное усиление осуществляется на низких частотах. Увеличение шумов приводит к невозможности различать слабые сигналы на фоне шума.

Шумы усилителей можно разделить по источнику их возникновения на внешние и внутренние. Внешние попадают на вход усилителя в результате наводок от работающих вблизи мощных устройств, например, радиопередатчиков, электромоторов или же из-за проникновения выходного сигнала схемы на вход через паразитные емкоети в самом корпусе усилителя. И если с помехами и наводками, вызванными внешними причинами, можно бороться с помощью фильтрации сигнала и выполнения удачной конструкции (оптимального расположения элементов и хорошей разводкой проводников, также экранированием схемы), то от шумов, возникающих в процесе усиления сигнала, избавиться гораздо труднее.

Внутренние шумы усилителя возникают при прохождении тока через пассивные и активные элементы схемы.
От построения схемы (схемотехники) также в немалой степени зависят шумовые характеристики. При разработке усилителя, имеющего большое отношение сигнал/шум, кроме оптимального выбора вида схемы, важно правильно подобрать элементную базу и оптимизировать режим работы каскадов.

Выбор компонентов схемы

В реальном усилителе источником внутренних шумов являются:
1) тепловые и токовые шумы резисторов;
2) фликкер-шумы конденсаторов, диодов и стабилитронов;
3) флуктуационные шумы активных элементов (транзисторов);
4) вибрационные и контактные шумы.

Резисторы

Собственные шумы резисторов складываются из тепловых и токовых шумов.

Тепловые шумы вызваны движением электронов в токопро-водящем веществе, из которого изготовлен резистор (этот шум увеличивается с увеличением температуры). Если на резистор не действует напряжение, то ЭДС шумов на нем (в мкВ) определяется из соотношения:

Eш=0,0125 x f x R,
где f -полоса частот в кГц; R -сопротивление в кОм.

Токовые шумы возникают при протекании через резистор тока. В этом случае шумовое напряжение появляется из-за эффекта флуктуации контактных сопротивлений между проводящими частицами материала. Его величина линейно зависит от приложенного напряжения. Поэтому шумовые свойства резисторов характеризуются уровнем шума, представляющим собой отношение действующего значения переменной составляющей напряжения шумов Em (мкВ) к приложенному напряжению U (В): Em/U.

Частотный спектр обоих видов шумов непрерывный ("белый шум"). И если у теплового шума он равномерно распределен до очень высоких частот, то у токового шума начинает спадать уже примерно с 10 МГц.

Общая величина шума пропорциональна квадратному корню сопротивления, поэтому для его уменьшения величину сопротивлений в схеме надо также уменьшать.
Иногда с целью снижения шумов, вызванных резисторами, прибегают к их параллельному (или последовательному) включению, а также устанавливают большей мощности, чем это требуется для работы. Кроме того, можно применять из них те типы, в которых за счет технологии изготовления этот параметр меньше.

У непроволочных резисторов токовые шумы значительно больше тепловых. Общий уровень шума для разных типов резисторов может находиться в диапазоне от 0,1 до 100 мкВ/В.

Для сравнения различных резисторов (постоянных и подстроечных из группы СП) максимальные значения шумов приведены в таблице 1

Тип резисторов Технологическое исполнение Уровень шума, мкВ/В БЛТ буроуглеродистые 0,5 С2-13 С2-29В металлодиэлектрические 1,0 С2-50 металлодиэлектрические 1,5 МЛТ ОМЛТ С2-23С2-33 металлодиэлектрические 1...5 С2-26 металлооксидные 0,5 СП3-4
СП3-19
СП3-23 пленочные компазиционные 47...100
25...47
25...47
Таблица 1 - Шумовые свойства резисторов

Как видно из таблицы, подстроенные резисторы значительно больше шумят. По этой причине их лучше применять с небольшими номиналами или же вообще исключить из схемы.
Шумовые свойства резисторов можно использовать для выполнения широкополосного генератора шума.

В качестве рекомендаций по выбору резисторов для сборки малошумящего усилителя можно отметить, что наиболее удобно использовать типы: С2-26, С2-29В, С2-33 и С1-4 (бескорпусное чип-исполнение). В последнее время в продаже появились малошумящие импортные металлодиэлектрические резисторы, по конструкции аналогичные С2-23, но с более низким коэффициентом шума (0,2 мкВ/В).

Существенно снизить шумы у резисторов можно путем их сильного охлаждения, но такой способ слишком дорогой и применяется очень редко.

Конденсаторы

В конденсаторах источником фликкершумов является ток утечки. Наибольшие токи утечки имеют оксидные конденсаторы большой емкости. Причем утечка увеличивается с увеличением емкости и снижается с увеличением допустимого номинального рабочего напряжения.

Справочные данные по наиболее распространенным оксидным конденсаторам приведены в таблице 29.
Наименьшие токи утечки среди полярных конденсаторов имеют: К53-1А, К53-18, К53-16, К52-18, К53-4 и другие.
Оксидные конденсаторы, установленные на входе в качестве разделительных, способны существенно увеличить шумы усилителя. Поэтому желательно избегать их применения, заменяя на пленочные (К10-17, К73-9, К73-17, КМ-6 и др.), хотя это и приведет к существенному увеличению размеров конструкции.

Тип конденсатора Технология изготовления Рабочая температура, С Ток утечки, мкА К50-6
К50-16
К50-24
алюминиевые оксидно-электролитические -10...+85
-20...+70
-25...+70 4...5000
4...5000
18...3200 К52-1
К52-2
К52-18 танталовые оксидные объемно-пористые -60...+85
-50...+155
-60...+155 1,2...8,5
2...30
1...30 К53-1
К53-1А
К53-18 танталовые оксидно-полупроводниковые -80...+85
-60...+125
-60...+125 2...5
1...8
1...63
Таблица 2 - Справочные параметры конденсаторов

Диоды и стабилитроны

При прямом прохождении тока шумы у диодов минимальны. Наибольший шум обеспечивает ток утечки (при действии обратного напряжения), и чем он будет меньше, тем лучше. Довольно большие шумы у стабилитронов. Это свойство даже иногда используют для выполнения простейших генераторов шума для детских игрушек (имитаторы шума прибоя, звуков костра и др. -Л16, Л17). Для получения максимального шума в таких схемах стабилитроны работают на малых токах (с большим добавочным резистором).

Трнзисторы

В самом транзисторе основными видами шумов являются тепловой и генерационно-рекомбинационный, спектральная плотность мощности которых не зависит от частоты.

Чтобы снизить уровень шума, для работы во входных каскадах у нас в стране обычно применяют малошумящие биполярные транзисторы с нормируемым коэффициентом шума (Кш). Такими являются: (п-р-п) КТ3102Д(Е), КТ342В и (p-n-р) КТ3107Е(Ж, Л) и ряд др. Тут следует отметить, что применение малошумящих высокочастотных биполярных транзисторов в диапазоне низких частот, как правило, бывает нецелесообразно. У таких транзисторов нормируется коэффициент шума только в области высоких частот, а в диапазоне ниже 100 кГц они могут шуметь не меньше любых других. Кроме того, у таких транзисторов возможно проявление склонности к возбуждению (автогенерации).

При необходимости получить большое входное сопротивление во входном каскаде усилителя нередко применяют полевой транзистор КП303В(А). Он изготовлен с затвором на основе р-n перехода (каналом n-типа) и имеет нормируемый коэффициент шума.

Контактные шумы

возникают при некачественной пайке (с нарушением температурного режима) или в местах соединения разъемов. По этой причине не рекомендуется выполнять подключение входных цепей малошумящего усилителя через разъемные соединения. Я также встречался с ситуацией, когда транзисторы после повторной пайки больше шумели в той же самой схеме.

Вибрационные шумы

могут проявляться при эксплуатации устройства на подвижных объектах или в местах с повышенной вибрацией от работающего оборудования. Они возникают из-за передачи механических колебаний на обкладки конденсаторов, между которыми имеется разность потенциалов (так называемый "пьезо-микрофонный эффект"). Это наблюдается даже в малогабаритных керамических конденсаторах (К10, К15 и др.) повышенной емкости (более 0,01 мкФ). Особенно сильно такая помеха может проявляться в разделительных конденсаторах, установленных на входе усилителя. Сигнал помехи при механических вибрациях имеет форму коротких остроконечных импульсов, спектр которых находится в диапазоне низких частот. Для борьбы с такого вида помехами можно применять амортизацию всей конструкции. В оксидных конденсаторах эти помехи не возникают.

При выборе деталей для сборки малошумящей схемы необходимо принимать во внимание их срок изготовления. Производитель гарантирует параметры только в течение определенного срока хранения. Это обычно не более 8... 15 лет. Со временем происходят процессы старения, проявляющиеся в снижении сопротивления изоляции, у конденсаторов уменьшается емкость и возрастают токи утечки. Особенно сильно меняют свои характеристики со временем оксидные конденсаторы. По этой причине лучше, по возможности, избегать их применения в цепях прохождения сигнала.






Рекомендуемый контент




Copyright © 2010-2019 housea.ru. Контакты: info@housea.ru При использовании материалов веб-сайта Домашнее Радио, гиперссылка на источник обязательна.