Система ФАПЧ и ее применения

   

В. ГолубСистема ФАПЧ и ее применения

Система ФАПЧ (система фазовой автоподстройки частоты) [1-4], как следует из её названия, является системой автоматического регулирования (следящей системой), частота настройки которой определяется частотой управляющего сигнала, а сигналом рассогласования является разность фаз управляющего сигнала и сигнала обратной связи. В связи с тем, что настройка осуществляется по разности фаз, система является астатической по отношению к частоте: в установившемся режиме частота настройки точно равна частоте управляющего сигнала. При определённых условиях система ФАПЧ может быть астатической и по фазе.

Наряду с основным свойством автоподстройки, система ФАПЧ обладает свойством фильтрации и ведёт себя, независимо от функционального назначения, как следящий полиномиальный фильтр. Система ФАПЧ является системой с многофункциональными возможностями и используется для частотной модуляции и демодуляции, частотной фильтрации (в том числе, фильтрации модулирующей функции частоты), умножения и преобразования частоты, выделения опорного колебания для когерентного детектирования и др.

Система ФАПЧ может быть аналоговой, импульсной, цифровой или комбинированной (аналого-импульсной, импульсно-цифровой и так далее). В аналоговой системе ФАПЧ действует непрерывный сигнал, характеризуемый мгновенными значениями параметров в каждый момент времени. В импульсной системе параметры сигнала характеризуются дискретными значениями, которые могут быть мгновенными или интервальными. Импульсным сигналом с мгновенными отсчётами является, например, прямо-угольный (типа “меандр”) сигнал управляемого генератора, характеризуемый мгновенными значениями частоты в точках изменения уровней. Импульсным с интервальными отсчётами является, например, сигнал импульсного фазового детектора (ФД), длительность импульсов которого определяется измеряемым фазовым интервалом. Интервальный импульсный сигнал может быть причиной временных и других видов искажений. В цифровой системе ФАПЧ используется, соответственно, цифровой сигнал, представляющий собой дискретный поток данных, определяемых значениями квантованных отсчётов аналогового сигнала и выражаемых цифровым кодом. Квантованные отсчёты цифрового сигнала также могут быть как мгновенными, так и интервальными.

Ниже даётся обобщённый инженерный анализ системы ФАПЧ с аналоговыми и импульсными элементами и рассмотрены применения системы.

Рассматриваемые системы ФАПЧ находят широкое применение в микроэлектронных компонентах, производимых известными фирмами. Так, например, фирма Analog Devices использует систему ФАПЧ:

  • в одно- и двухканальных синтезаторах ADF410x/1x/5x и ADF420x/1x/5x типов “Integer-N” и “Fractional-N” с программируемыми (перестраиваемыми) частотами до 3,7 ГГц [4];
  • для умножения тактовой частоты в ЦАП серии TxDAC+ AD9751/3/5 (300 МГц), AD9772/4 (400/128 МГц), в цифровых (DDS) синтезаторах-модуляторах AD9852/4 (300 МГц) и модуляторах AD9853/6 (168/200 МГц);
  • для умножения частоты в k = 2N/n раз, где n — целое число из ряда 1, 2, ... 2N/2,5, — с DDS-синтезаторами AD9850/1/2/4 в качестве делителей частоты в цепи обратной связи (например, при N = 48 и максимальной частоте после умножения 300 МГц при использовании AD9852);
  • в качестве частотного модулятора, совмещённого с синтезатором частот, и частотного демодулятора, совмещённого с пребразователем частоты, — в микросхеме приёмопередатчика AD6411 системы DECT;
  • в качестве квадратурного модулятора, совмещённого с квадратурным преобразователем частоты, — в микросхеме приёмопередатчика AD6523, применяемого совместно с синтезатором AD6524 (также на базе ФАПЧ), — в системах GSM и DCS [5];
  • в качестве источника опорной частоты с квадратурным выходом для демодулятора в микросхеме приёмопередатчика AD6432 системы GSM.

Фирма Texas Instruments использует систему:

  • в двух- и трехканальных синтезаторах частот TRF2020 — до 0,25, 0,25 и 1,2 ГГц, TRF2050 — до 0,25 и 1,2 ГГц, TRF2052 — до 0,15 и 2,0 МГц и TRF3040, являющимся также модулятором, — до 0,2 и 2,0 ГГц;
  • для синтеза сигналов опорной частоты для модуляторов в микросхемах TRF3040 и TRF3520;
  • для умножения тактовой частоты в цифровых сигнальных процессорах TMS320C54x, TMS320C62x, TMS320C67x и TMS320VC33.

Фирма Motorola (Semiconductor Product Sector) использует систему в двухканальных синтезаторах частот MC145181 (до 550 и 60 МГц), MC145225 (до 1,2 и 0,55 ГГц), MC145230 (до 2,2 и 0,55 ГГц) и др., предназначенных для аппаратуры радиосвязи различных систем.

Фирма Gran-Jansen AS (Норвегия) использует систему ФАПЧ в приёмопередатчике GJRF400 (GJRF10), работающем в диапазоне частот 300–500 МГц, для синтеза опорного колебания и для аналоговой частотной модуляции [6].

Приведённый перечень — далеко не полный, однако перечисленные микросхемы достаточно полно характеризуют возможности применения системы ФАПЧ.

Основные соотношения

В обобщённом виде любая система автоматического регулирования, независимо от её назначения, содержит измерительное устройство с вычитателем на входе и объект регулирования, выход которого подключен к вычитателю. В вычитателе сравниваются управляющая величина и управляемая (с выхода объекта регулирования), являющаяся величиной обратной связи. Наряду с понятиями управляющей и управляемой величин, будем пользоваться понятиями входной и выходной, определяющих функциональное назначение системы. В общем случае, входная и выходная величины не всегда являются управляющей и управляемой (в указанном понимании этих терминов). Передаточная функция системы —

K(p) = xвых/хвх = Кпр(р)/[1 + Кпр(р)Кобр(р)],      (1)

где xвых и xвх — выходная и входная величины, а Kпр(p) и Kобр(p) — передаточные функции цепей прямой передачи (от входа к выходу) и отрицательной обратной связи (от выхода к входу), p — оператор Лапласа (знак плюс в знаменателе означает, что обратная связь — отрицательная). Входная величина может подаваться на вход любого элемента, а выходная — сниматься также с выхода любого элемента системы.

Рис. 1

На рис. 1а приведена схема простейшей системы ФАПЧ, содержащей фазовый детектор ФД (измерительное устройство), фильтр Ф и управляемый генератор УГ (объект регулирования). ФД и УГ являются обязательными элементами системы, а фильтр, влияющий на её динамические (частотные) свойства, может отсутствовать. Управляющей величиной является частота w0 + Dwвх переменного напряжения на входе ФД, составляющие которой: w0 — опорная частота системы и Dwвх — изменение частоты, являющееся входной величиной, воздействующей на систему. Величиной обратной связи является частота УГ, равная w0 + Dwобр, где Dwобр = Dwвх – pDj, а pDj и Dj — изменения частоты и фазы на входе ФД, вызванные Dwвх. На рис. 1б приведена схема варианта системы, который отличается тем, что на входе ФД действует только опорная частота w0, а входной величиной системы является напряжение uвх на входе УГ, приложенное через сумматор “+”. Входная и выходная величины Dwвх и uвых на рис. 1а определяют назначение системы — частотный демодулятор, а uвх и w0 + Dwвых на рис. 1б — частотный модулятор. Функционально сумматор на рис. 1б является вычитателем, так как в петле системы действует отрицательная обратная связь.

Несмотря на то, что управляющей величиной в системе ФАПЧ является частота, в ФД сравниваются не частоты, а фазы напряжений на его входе. В результате, разность фаз, являющаяся интегралом разности частот, равна Dj = (Dwвх – Dwобр)/p (рис. 1а) или Dj = -Dwвых/p (рис. 1б), а передаточная функция ФД, соответственно, KФД(p) = KФД/p, где KФД — коэффициент передачи с размерностью В/рад. Разность фаз на входе ФД, помимо Dj, может содержать начальную постоянную составляющую j0, при которой на входе ФД j = j0 + Dj. Составляющая j0 является постоянной интегрирования и определяется выбором режима системы ФАПЧ с учётом детекторной характеристики ФД.

Передаточная функция системы ФАПЧ по схеме на рис. 1а, используемой для частотной демодуляции, характеризуется выражением

КЧД(р) = Uвых/Dwвх = К0/[1 + pt0/kф(р)],      (2)

где uвых — напряжение на выходе фильтра (выходное напряжение демодулятора), обусловленное изменением частоты на входе Dwвх, K0 = 1/KУГ — коэффициент передачи системы (в данном случае — на “нулевой” частоте), t0 = 1/KФДKФKУГ — “собственная” (без учёта kФ(p) фильтра) постоянная времени системы, KУГ — коэффициент передачи управляемого генератора (с размерностью (рад/с)/В), а KФ и kФ(p) — постоянный и частотно-зависимый множители передаточной функции фильтра KФ(p) = KФkФ(p). При отсутствии фильтра, то есть при KФ(p) = 1,

КЧД(р) = К0/(1 + рt0),     (3)

где t0 = 1/KФДKУГ. Передаточная функция (3) является функцией полиномиального ФНЧ 1-го порядка. В общем случае, порядок системы ФАПЧ равен единице плюс порядок применённого фильтра Ф (интегрирующей цепи или ФНЧ).

Передаточные функции (2) и (3) являются “внешними” функциями системы ФАПЧ, обусловленными заданными входом и выходом системы. Основной функцией системы является

КDj(p) = Dj/Dwвх = [t0/kф(р)]/[1 + pt0/kф(р)],     (4)

где Dj — изменение разности фаз на входе ФД, обусловленное изменением управляющей частоты Dwвх, а 1 + pt0/kФ(p) в знаменателе функции — полином системы (согласно терминологии в теории полиномиальной фильтрации [7]), присутствующий во всех “внешних” передаточных функциях, в том числе в (2), отличающихся выражениями в числителе.

Элементы системы ФАПЧ

Как уже сказано, основными (обязательными) элементами системы ФАПЧ являются ФД и УГ, которые в рассматриваемых системах могут быть аналоговыми или импульсными. Кроме того, в составе рассматриваемых систем ФАПЧ могут быть аналоговые фильтры, делители частоты с импульсным или аналоговым выходами, смесители и др.

Фазовые детекторы. На рис. 2 приведены детекторные характеристики наиболее применяемых ФД:

  • синусоидальная характеристика фазового детектирования перемножающего и коммутирующего аналоговых амплитудно-фазовых детекторов (АФД) (рис. 2а);
  • пилообразная характеристика спускового импульсного ФД (рис. 2б);
  • треугольная характеристика перемножающего импульсного ФД (рис. 2в) (показан также её вариант на рис. 2г);
  • пилообразная характеристика фазового детектирования двухполярного спускового импульсного частотно-фазового детектора (ЧФД) (рис. 2д).

Рис. 2

Прежде всего отметим, что детекторные характеристики являются статическими, в которых не проявляется динамическая погрешность, свойственная импульсным ФД. В аналоговых ФД измеряется мгновенная разность фаз

Dj(t) = j1(t) - j0(t) = dj(t),

где, в простейшем случае, j1(t) = w0t + dj(t) и dj(t) — фаза и модулирующее изменение фазы детектируемого сигнала, а j0(t) = w0t — фаза опорного колебания. Подчеркнём, что речь идёт о текущей разности мгновенных значений j1(t) и j0(t), одновременно отсчитываемых в одни и те же моменты времени t.

В импульсных ФД, в отличие от аналоговых, измеряется фазовый интервал Dj(Dti), пропорциональный временному интервалу Dti = t0i – ti, где t0i и ti — разные моменты времени, в которых фазы сигнала j1(ti) = w0ti + d j(ti) и опорного колебания j0(t0i) = w0t0i равны. Обычно берутся точки с нулевыми мгновенными значениями синусоиды (рис. 3а), обеспечивающие формирование входных и, соответственно, выходных импульсов ФД, показанных на рис. 3б-г. При равенстве j1(ti) и j0(t0i) временной интервал равен Dti = dj(ti)/w0, а фазовый —

Dd(Dti) = w0Dti = dj(ti),     (5)

Согласно (5), измеряемые фазовые интервалы Dj(Dti) численно равны искомым мгновенным разностям фаз dj(ti). Однако следует учитывать, что в текущем масштабе времени последовательность интервальных отсчётов эквивалентна последовательности мгновенных отсчётов в дискретных точках tj = ti + Dti/2 — вместо точек ti, которым они соотвествуют. В результате, фаза будет измеряться с временной погрешностью Dti/2:

Dj(ti) = dj(ti + Dti/2)

Указанная погрешность Dti/2 не постоянна и зависит, согласно (5), от dj(ti), что является причиной “паразитной” угловой модуляции измеряемой фазы. В результате, при dj(t) = ФsinWt, где Ф = DwД/W и DwД — индекс модуляции и девиация частоты детектируемого сигнала, измеряемые значения разности фаз, будут равны Dj(tj) = Fsin(Wti + BsinWti), где B = (F/2)(W/w0) = DwД/2w0. “Паразитная” модуляция осуществляется с частотой W, что приводит к временной деформации функции измеряемой фазы Dj(tj) в пределах периода её изменения, равного 2p/W.

Рассмотрим детекторные характеристики ФД. Характеристика перемножающего аналогового АФД, показанная на рис. 2а, определяется выражением

UАФД = КАФДUcosj,     (6)

где U — амплитуда детектируемого напряжения, j — разность фаз между детектируемым и опорным напряжениями, а KАФД — коэффициент детектирования, зависящий от амплитуды опорного напряжения, которая в связи с этим должна быть постоянной. Оба напряжения, детектируемое и опорное, — синусоидальные. Выражение (6) справедливо и для коммутирующего аналогового АФД, использующего коммутатор детектируемого синусоидального напряжения, управляемый опорным прямоугольным напряжением. В общем случае, аналоговый АФД, согласно (6), детектирует не только разность фаз, но и амплитуду детектируемого напряжения U, почему и называется амплитудно-фазовым. В соответствии со сказанным, при фазовом детектировании амплитуду не только опорного, но и детектируемого напряжения следует поддерживать постоянной. Зависимость uАФД от U является недостатком детектора, если он используется в качестве фазового (коммутирующий АФД может быть использован также в качестве синхронного амплитудного детектора). Другим недостатком аналогового АФД является нелинейность его характеристики, в связи с чем для детектирования используют её узкие участки, например, от p/4 до 3p/4 или от -3p/4 до -p/4. При введении фазового смещения j0 = -p/2 рабочая точка на характеристике АФД (рис. 2а) смещается влево на указанный угол, а аргумент j в (6) заменяется на детектируемое изменение фазы Dj. В результате,

UАФД = КАФДUsinDj = КАФДUDj,     (7)

где вторая (приближенная) часть выражения, пропорциональная Dj, — для участка фазового диапазона Dj от -p/4 до p/4.

Отметим, что аналоговый перемножитель, обладающий указанными выше недостатками (при использовании его в качестве фазового детектора), находит широкое применение в качестве смесителя в преобразователях частоты, где требуется высокая “чистота” преобразуемого спектра частот, и для которых аналоговые перемножители являются идеальными элементами.

В качестве перемножающего импульсного ФД с характеристикой на рис. 2в (инверсной по отношению к характеристике на рис. 2а) используют обычно микросхему “Исключающее ИЛИ”, однако она обладает нестабильными выходными уровнями “0” и “1”, в связи с чем для непосредственного измерения разности фаз она малопригодна. Поэтому используют аналоговый мультиплексор с двухразрядным адресным входом в качестве входов ФД. Такой мультиплексор можно представить состоящим из фазодетектирующей микросхемы “Исключающее ИЛИ” и управляемого ею выходного коммутатора. Применение коммутатора и коммутируемых точных напряжений обеспечивает получение точных характеристик ФД. Кроме того, в зависимости от выбора уровней коммутируемых напряжений, возможно изменение величины коэффициента преобразования (детектирования), а также смещение характеристики по вертикали и её инверсия. На рис. 2г показана смещённая характеристика, обусловленная коммутируемыми напряжениями -E и E (вместо 0 и 2E, которым соответствует характеристика на рис. 2в). Кроме того, характеристика на рис. 2г показана в функции от Dj при j0 = p/2 (подобно (7) для АФД):

UФД = КФДDj,     (8)

Характеристика (8) линейна на участке рабочего диапазона от -p/2 до p/2.

Перемножающие импульсные ФД находят широкое применение в системах ФАПЧ. Отметим следующие особенности в работе ФД: в импульсных ФД коммутируются постоянные уровни “посторонних” источников, тогда как в коммутируемых аналоговых АФД коммутируется детектируемое напряжение. И, кроме того, в импульсных ФД коммутатор управляется импульсами с выхода перемножителя, тогда как в аналоговых АФД коммутатор управляется опорным напряжением.

Характеристика спускового импульсного ФД, например, типа RS-триггера (рис. 2б) отличается от рассмотренных характеристик в два раза большим фазовым диапазоном — от 0 до 2p и наклоном рабочего участка характеристики только одного знака — положительного или отрицательного (положительный наклон характеристики, показанный на рис. 2б, может быть изменён на отрицательный “переполюсовкой” входов или выходов триггера). Для повышения точности характеристики, подобно “Исключающему ИЛИ”, на выходе триггера может быть включен коммутатор с коммутируемыми точными напряжениями. Существенным является то, что рассматриваемый ФД является спусковым и срабатывает “по фронту”, тогда как перемножающие ФД работают “по длительности”. По этой причине спусковой (триггерный) ФД обладает меньшей помехоустойчивостью, и, кроме того, его применение приводит к переходным процессам в начале демодулируемых посылок.Фазовая характеристика ЧФД представляет собой совокупность двух характеристик спускового импульсного ФД, сложенных с обратными знаками (рис. 2д). В современных ЧФД, широко применяемых в синтезаторах частот, приняты меры, обеспечивающие качественную “сшивку” двух характеристик, при которой шум детектирования практически отсутствует (так называемые малошумящие ЧФД). Фазовый диапазон ЧФД — от -2p до 2p. Полярность выходных импульсов ЧФД определяется знаком, а длительность, как и в обычном спусковом ФД, — величиной измеряемой разности фаз (фазовым интервалом). Обычно ЧФД имеют токовый выход (при большом выходном сопротивлении), что оказывается удобным при построении систем с пассивными пропорционально-интегрирующими цепями в качестве фильтра. В установившемся режиме, при использовании системы ФАПЧ с астатизмом по фазе, длительность импульсов на выходе ЧФД равна нулю (импульсы отсутствуют). Этот режим является основным при использовании ЧФД в синтезаторах частот. При частотной расстройке ЧФД работает как частотный детектор с двухполярной релейной характеристикой детектирования, зависящей от знака расстройки.

Рис. 3

Характеристики ФД всех типов являются периодическими, что обусловлено периодичностью изменения фазового угла. Положительный или отрицательный наклоны характеристик аналоговых или перемножающего импульсного ФД определяют знак плюс или минус передаточной функции ФД, который автоматически выбирается системой ФАПЧ при её включении. При этом в системе обеспечивается отрицательная обратная связь с учётом знаков (плюс или минус) коэффициентов передачи других элементов. В отличие от синусоидальной или треугольной характеристик ФД, пилообразные характеристики спускового ФД и ЧФД требует предварительного выбора знака наклона, который, как сказано выше, может быть изменён “переполюсовкой”.

Обычно под ФД, как и под детектором любого вида, понимается элемент, состоящий из двух частей — детектирующей и фильтрующей. При построении системы ФАПЧ в качестве ФД используется его первая, детектирующая, часть, а применяемый фильтр рассматривается как элемент системы. Выходной сигнал ФД содержит полезную составляющую, пропорциональную или почти пропорциональную (в зависимости от типа ФД) детектируемой разности фаз, а также высокочастотные составляющие, проявляющиеся в виде пульсаций и подлежащие обычно фильтрации. Спектр пульсаций определяется несущей с удвоением частоты (для перемножающих ФД и коммутирующего ФД с удвоением) или без удвоения частоты (для коммутирующего ФД без удвоения и спусковых ФД).

Для дискретных УГ (с прямоугольным выходным напряжением) наличие высокочастотной составляющей в управляющем сигнале, поступающем с выхода ФД, несущественно (показано ниже). В аналоговых УГ (с синусоидальным выходным напряжением) её наличие может привести к “паразитной” частотной модуляции в пределах периода выходного напряжения. Существенным является влияние высокочастотной составляющей на выходной сигнал УГ при использовании системы ФАПЧ для умножения частоты, когда частота выходного сигнала УГ выше частоты пульсаций на входе. Однако, в синтезаторах с умножением частоты обычно используется ЧФД с нулевым выходным напряжением (током) и, соответственно, без пульсаций в установившемся режиме, свойственном синтезаторам.

В дополнение к сказанному отметим, что входные сигналы аналоговых и перемножающего импульсного ФД должны быть соответственно синусоидальными или прямоугольными со скважностью, равной 2. Для спусковых ФД соблюдение скважности не требуется, но следует учитывать, что детектироваться будет разность фаз между фронтами импульсов, производящими запуск и сброс триггера.

Управляемые генераторы. Как уже сказано, УГ в системе ФАПЧ может быть аналоговым или импульсным (как и ФД). Аналоговым УГ может быть узкополосный высокочастотный (сотни МГц, единицы ГГц) транзисторный генератор с колебательным контуром, в составе которого используются варикапы (варакторы), управляемые напряжением. Генератор не требует смещения E0, показанного на рис. 1а,б. Его режим обеспечивается собственной цепью смещения. Выходное напряжение генератора — синусоидальное, но при использовании компаратора может быть прямо-угольным (импульсным).

В качестве импульсного УГ (с частотой до единиц МГц) может применяться широкополосный преобразователь “напряжение-частота” с непрерывным интегрированием и уравновешиванием заряда, известный также как ЧИМ модулятор. Частота такого УГ (её мгновенные дискретные значения) пропорциональна преобразуемому аналоговому напряжению (его мгновенным значениям в тех же временных точках отсчёта) [8]. Примером рассматриваемого УГ могут быть преобразователи AD650 и AD654 фирмы Analog Devices. Существует разновидность УГ с синхронизацией частоты выходного сигнала тактовыми импульсами (AD652, AD7741/2). Такой УГ аналогичен сигма-дельта модулятору [9] и предназначен для использования в системах с цифровым преобразованием.

Рис. 4

На рис. 4а приведена структурная схема импульсного УГ (без синхронизации), а на рис. 4б — эпюры напряжений на его элементах. Там же показаны напряжения на элементах бесфильтровой системы ФАПЧ с рассматриваемым импульсным УГ и перемножающим импульсным ФД. На рис. 4а,б: Uвх — напряжение на управляющем входе ФД; Uобр — напряжение обратной связи на другом входе ФД, являющееся выходным напряжением УГ (UУГ); UвхУГ — напряжение на входе УГ, являющееся выходным напряжением ФД (UФД); Uинт, Uкомп и Uодн — напряжения интегратора, компаратора и одновибратора в составе УГ. Эпюры напряжений наглядно иллюстрируют процесс работы УГ и системы ФАПЧ в целом. Видно, в частности, что в интеграторе “фильтруется” UвхУГ: результат интегрирования, завершаемый срабатыванием компаратора, определяется интегрируемой площадью напряжения UвхУГ и не зависит от его формы.

Делители частоты. Делители частоты, включаемые в петле обратной связи между УГ и ФД, обеспечивают умножение частоты системой ФАПЧ на выходе УГ. В качестве делителей могут использоваться обычные счётчики или специально созданные делители для синтезаторов частот (в сочетании со счётчиками, включаемыми на входе системы ФАПЧ). В синтезаторах частот обеспечивается дробное умножение частоты с высоким разрешением, реализуемым путём программной перестройки. К специальным делителям частоты, применяемым в синтезаторах, относятся делители типа “Integer-N” и “Fractional-N” (с целыми и дробными коэффициентами деления соответственно) [4,10]. Первые из них широко применяются в синтезаторах частот, вторые являются новыми, обеспечивающими более высокие параметры синтезаторов. В качестве делителей частоты могут использоваться также упоминаемые выше цифровые (DDS) синтезаторы с аналоговым выходом.

Обычно устройства, использующие систему ФАПЧ, выпускаются в виде микросхем в одном кристалле. Внешними бывают фильтры, рассмотренные ниже, а также частотозадающие цепи управляемых генераторов, содержащие индуктивные элементы, конденсаторы и варикапы (варакторы).

Режим работы системы ФАПЧ

Рис. 5

На рис. 5а приведена схема системы ФАПЧ (в упрощённом виде без фильтра) с обозначением величин, характеризующих режим работы системы (для усилителя подобный режим назывался бы режимом по постоянному току). На рис. 5а управляющей величиной является частота w0 на входе, которой, благодаря фазовой автоподстройке, равна частота УГ, а управляющее напряжение УГ и, соответственно, выходное напряжение ФД равны E0 = w0/KУГ . Начальная разность фаз на входе ФД с характеристикой на рис. 2в (перемножающий импульсный ФД с коммутируемыми напряжениями 0 и 2E) равна j0 = E0/KФД = = w0/KФДKУГ = w0t0. Обычно выбирается j0 = p/2 или -p/2, при котором рабочая точка находится посередине линейного участка характеристики.

На рис. 5б приведён вариант схемы с внешним источником смещения E0, соответствующий схеме на рис. 1в. В этом варианте напряжение на выходе ФД равно нулю, но начальная фаза, как и в предыдущем случае, равна j0 = p/2 или -p/2. Последнее обеспечивается коммутируемыми напряжениями ФД, равными -E и E, и соответствует характеристике на рис. 2г. Реально в схемах на рис. 5а,б начальная разность фаз и выходное напряжение ФД будут иметь незначительные отклонения от указанных величин, что обусловлено автоподстройкой системы для компенсации влияния отклонений параметров ФД и УГ и напряжения E0 внешнего источника от заданных номинальных значений.

Несмотря на усложнение, схема на рис. 5б (рис. 1в) может быть более предпочтительной по следующей причине. Дело в том, что постоянная времени t0 определяет, наряду с kФ(p), динамические свойства системы, в связи с чем должен быть возможным выбор требуемой её величины. В то же время, для схемы на рис. 5а, согласно приведённому выше выражению для j0, величины t0 и j0 взаимосвязаны, и изменение t0 повлечёт за собой изменение j0. В результате, изменится заданный режим ФД и системы ФАПЧ в целом. Схема на рис. 5б лишена указанного недостатка, и t0 может выбираться независимо от j0.

Частотные свойства системы ФАПЧ

Передаточная функция (3) является функцией 1-го порядка. Применение фильтра в цепи ФАПЧ изменяет динамические свойства системы. Полином системы (многочлен в знаменателе передаточных функций) определяет порядок, вид аппроксимации и частотный диапазон фильтрации, а член или многочлен в числителе определяет вид фильтрации (нижних, верхних частот или полосовой фильтрации) и коэффициент передачи.

Рис. 6

В системах ФАПЧ 2-го порядка обычно используется один из фильтров 1-го порядка, показанных на рис. 6 (отметим, что общепринятое название “фильтр” в данном случае является условным; правильнее было бы считать их цепями частотной коррекции):

  • интегрирующий фильтр (ИФ) (рис. 6а) с передаточной функцией KФ(p) = Uвых/Uвх = 1/(1+ptФ) = kФ(p) при KФ = 1, где tФ = RC — постоянная времени фильтра;
  • пропорционально-интегрирующие фильтры (ПИФ) (рис. 6б,в) с передаточной функцией KФ(p) = Uвых/Uвх = = (1 + ptФ1)/(1 + ptФ) = kФ(p) при KФ = 1, где tФ = RC, tФ1 = R2C, R = R1 + R2;
  • пропорционально-интегрирующие цепи (ПИ) (рис. 6г,д) с передаточной функцией KФ(p) = Uвых/Iвх = KФkФ(p), где KФ = R, kФ(p) = 1 + 1/ptФ1, tФ1 = RC.

Цепь ПИ отличается от ИФ и ПИФ тем, что источником её входного сигнала является источник тока Iвх с бесконечно большим сопротивлением. В системе ФАПЧ цепь ПИ реализуется, например, при помощи операционного усилителя с ПИ в качестве цепи параллельной отрицательной обратной связи. Передаточная функция цепи с усилителем равна KФ(p) = -(KФ + 1/ptФ) = -KФkФ(p), где KФ = R/r, tФ = rC, r — токозадающее сопротивление цепи, включенное на входе усилителя, а kФ(p) — согласно ПИ на рис. 6г,д. Знак минус, определяемый инвертирующим включением усилителя, должен учитываться в фазировке ФД, если ФД — с пилообразной характеристикой. Отметим, что tФ является “физической” постоянной времени цепи ПИ, а также ПИФ, в то время как tФ1 — условной постоянной времени, удобной для записи математических выражений. Передаточная функция ПИ, определяемая KФ + 1/ptФ, в отличие от ПИФ состоит из двух функций — пропорциональной KФ и интегрирующей 1/ptФ. KФ влияет на добротность и, соответственно, на устойчивость системы (при KФ --> 0 система ФАПЧ неустойчива), а член 1/ptФ определяет интегрирующее свойство ПИ, обеспечивающее астатизм системы ФАПЧ по отношению к фазе. В последнее время вместо операционного усилителя, обеспечивающего токовую “запитку” ПИ, применяется токовый формирователь, используемый вместе с рассмотренным выше ЧФД. Указанный формирователь обеспечивает подключение ПИ “нижним” выводом к “земле”. Отметим, что, наряду с простейшей RC-цепью на рис. 6г, в качестве ПИ используются цепи сложной конфигурации и, соответственно, более высоких порядков [4,10].

Помимо основных выходов фильтров Uвых, подключаемых в системе ФАПЧ к входу УГ, на рис. 6б-д показаны дополнительные выходы Uвых*, которые, наряду с основными, могут быть использованы для съёма выходного сигнала системы ФАПЧ [11]. Использование дополнительных выходов эквивалентно подключению внешних фильтров на выходе системы, не задействуемых в замкнутой петле обратной связи. Передаточные функции фильтров для дополнительных выходов, наряду с функциями для основных выходов, приведены в таблице.

Полином передаточных функций системы ФАПЧ 2-го порядка, как и полиномиальных фильтров того же порядка, определяется обобщённым выражением 1 + p/w0Q + p2/w02, где w0 — собственная частота системы, известная в теории фильтров как частота полюсов, а Q — добротность, определяющая вид аппроксимации частотных характеристик (по Баттерворту, Чебышеву и т.д.) [7]. В таблице приведены полиномы функций системы ФАПЧ с разными фильтрами, а также соответствующие им выражения Q и w0. В таблице приведены также данные основной функции KDj(p) (4) и передаточной функции системы при её использовании в качестве частотного демодулятора: KЧД^(p) — с выходом после ФД (до фильтра), KЧД(p) — после фильтра и KЧД*(p) — при съёме сигнала с дополнительного вывода фильтра. Подчеркнём, что оператор p в передаточных функциях системы ФАПЧ определяется выражением jW, где W — частота изменения частоты на входе и, соответственно, выходного напряжения (при частотной модуляции — это частота модуляции).

Анализируя данные, приведённые в таблице, можно сделать следующие выводы. Функция KDj(p) системы ФАПЧ 1-го порядка является функцией ФНЧ, а с ПИ — функцией ПФ (полосовой фильтрации) с резонансной частотой w0. Функция ПФ системы с ПИ определяет астатизм системы по отношению к фазе: коэффициент передачи на нулевой частоте равен нулю. Передаточная функция KDj(p) системы с ИФ и ПИФ является суммарной функцией ФНЧ и ПФ, которую можно рассматривать как функцию ФНЧ, изменённую в области частоты среза. Напомним, что фильтрация 2-го порядка является фильтрацией нижних частот, если в числителе функции — член нулевого порядка (t0), и полосовой фильтрации, — если первого порядка (pt0tФ1).

Функции KЧД(p) и KЧД*(p) для системы с ПИФ идентичны функциям для системы с ПИ, но они достигаются при указанных выше разных KDj(p). Применение дополнительных выходов, характеризуемых KЧД*(p), обеспечивает, в отличие от KЧД(p), получение передаточных функций типа ФНЧ (рис. 6б,г) и ПФ (рис. 6в,д), причём KЧД*(p) типа ФНЧ аналогична KЧД(p) системы с ИФ. Особенностью применения ПИФ, по сравнению с ИФ, является то, что требуемая добротность может быть задана изменением соотношения R2/R (tФ1/t0) без изменения t0 и tФ и, соответственно, без изменения w0.

Применение системы ФАПЧ

Применение системы ФАПЧ связано с тем, какой из её элементов является входным, а какой выходным. Рассмотрим основные применения системы ФАПЧ.

Частотный демодулятор. При использовании системы ФАПЧ в качестве частотного демодулятора ЧМ-сигнал подаётся на вход ФД (рис. 1а,в), а демодулированный — снимается, например, с выхода фильтра. Передаточная функция демодулятора будет определяться выражениями числителя и знаменателя, приведёнными в таблице, а также выражением (2). Для фильтрации демодулированного сигнала с требуемыми параметрами обычно используется дополнительный внешний фильтр. При этом систему ФАПЧ следует рассматривать как первую ступень фильтрации и соответствующим образом учитывать при расчёте общей передаточной функции фильтра (с требуемыми порядком, аппроксимацией и частотой среза).

Частотный модулятор. При использовании системы ФАПЧ в качестве частотного модулятора модулирующий сигнал uвх(t) подается на вход УГ, как показано на рис. 1б, а модулированный — снимается с выхода УГ. При этом собственно модулятором является УГ, а система ФАПЧ задаёт несущую частоту, определяемую опорной (управляющей) частотой на входе ФД. Кроме того, в системе обеспечивается фильтрация модулируемого сигнала, определяемая выбранными параметрами передаточной функции. В общем виде, передаточная функция системы ФАПЧ в режиме ЧМ, в отличие от (2) для демодуляции,

КЧМ(р) = Dwвых/uвх = [pK0/kф(р)/[1 + pt0/kф(р)],

где K0 = t0KУГ. При использовании ПИФ

КЧМ(р) = (рК0 + р2К0tф)/(1 + pt0 + p2t0tф);     (9)

КЧМ*(р) = рК0/(1 + pt0 + p2t0tф),     (10)

— соответственно для съёма сигнала ЧМ с основного и дополнительного выходов ПИФ (рис. 6б). Функция (9) является суммарной функцией ПФ и ФВЧ, а функция (10) — функцией ПФ. Второй вариант съёма сигнала является более предпочтительным для узкополосных модулированных сигналов.

Рис. 7

Частотные фильтры. На рис. 7а показана схема системы ФАПЧ с частотной фильтрацией напряжения uвх, а на рис. 7б — с частотной фильтрацией модулирующего изменения частоты Dwвх в составе ЧМ-сигнала. Оба фильтра имеют одну и ту же передаточную функцию

Кф(р) = 1/[1 + pt0/kф(р)],

являющуюся функцией ФНЧ при использовании ИФ и суммарной функцией ФНЧ и ПФ — при использовании ПИФ и ПИ. Кроме того, первый из фильтров (рис. 7а) может быть использован со съёмом сигнала с дополнительных выходов ПИФ и ПИ, для которых соответственно реализуются функции ФНЧ и ПФ.

Фазовращатель. Выше показана зависимость постоянной разности фаз на входе ФД от режима работы системы ФАПЧ (рис. 5а,б). В соответствии с этим, при съёме сигнала с выхода УГ, как показано на рис. 7б, возможно получение фазового сдвига выходного сигнала, например, j0 = p/2 или -p/2 (квадратурный фазовый сдвиг). Угол j0 = p/2 обеспечивается при выборе характеристики ФД на рис. 2г, а j0 = -p/2 — при “переполюсовке”, например, источников E и -E. Возможны и другие значения углов.

Умножитель частоты. Умножение частоты системой ФАПЧ обеспечивается при включении делителя частоты “:N” в цепь обратной связи, как показано на рис. 7в. Частота на выходе УГ, являющегося выходом умножителя, равна wвых = w0N, где N — коэффициент деления делителя. В синтезаторах частот, на входе системы ФАПЧ дополнительно включают делитель частоты “:R” (на рис. 7в не показан). В результате, w0 = wвх/R, а wвых = wвхN/R, где R — коэффициент деления делителя “:R”. Совместное применение делителей ”:R” и “:N” (с программируемыми коэффициентами деления) обеспечивает синтез частот в широком диапазоне и с высоким разрешением [4,10].

Существенным для умножителей частоты является то, что пульсации на входе УГ могут иметь частоту wZ0 или 2w0 (в зависимости от типа ФД), которая значительно меньше частоты УГ, равной w0N. В результате, это может привести к паразитной угловой модуляции сигнала УГ, проявляющейся в виде так называемого фазового шума. Для умножителей частоты, для которых характерен режим без модуляции, возможно применение низкочастотных фильтров, подавляющих указанные пульсации. Однако для синтезаторов частот, используемых в приёмных и передающих каналах радиосвязи, где требуется достаточно быстрое переключение частоты, существенным является их быстродействие. Поэтому другой путь, широко реализуемый в настоящее время, — это применение ЧФД (рис. 2д) с нулевым сигналом на его выходе (при использовании системы ФАПЧ в астатическом режиме) и относительно высокочастотного фильтра.

Введение делителя частоты в цепь обратной связи повышает инерционность системы ФАПЧ: t0 = N/KФДKФKУГ. Инерционность может быть снижена введением дополнительного усиления, которое будет компенсировать влияние N, но есть другой путь. В синтезаторах частот используются, как указано выше, делители частоты типа “Integer-N” или “Fractional-N”. Для последнего, в отличие от первого, характерны дробные числа коэффициента N. Поэтому значения N для “Fractional-N” могут быть меньшими (например, N = 10,25 вместо 1025 для “Integer-N”) при соответственно большей (в те же 100 раз) величине w0. При меньшей величине N будет меньшее влияние на t0, а при соответственно большей величине w0 облегчаются условия фильтрации сигнала ФД, поступающего на вход УГ.

Умножение частоты может быть также реализовано в системе ФАПЧ с DDS-синтезатором в качестве де-лителя частоты, но на более низких частотах. Если для синтезатора ADF4113 (с “Integer-N”) синтезируемые частоты — до 3,7 ГГц, то для умножителя частоты с DDS-синтезатором AD9852 — до 300 МГц. Умножение частоты иногда совмещают с частотной модуляцией (манипуляцией), как, например, в микросхеме приёмопередатчика AD6411. Отметим, что при умножении частоты ЧМ сигнала умножается не только частота несущего колебания, но и девиация частоты.

Рис. 8

Преобразование частоты с фазовой автоподстройкой. На рис. 8а показана схема системы ФАПЧ со встроенным преобразователем частоты, содержащем смеситель “X” и полосовой фильтр ПФ, настроенный на разность частот w0 = w1 – w2 (микросхема AD6411). Входной величиной является w1 + Dwвх с несущей w1, а выходной — напряжение uвых. Рассматриваемое устройство является частотным демодулятором, в котором демодуляции предшествует преобразование частоты. Особенностью устройства, в отличие от обычного включения преобразователя и демодулятора (без обратной связи), является то, что в нём осуществляется автоподстройка системы на разностную частоту w0. Она в качестве управляющей величины задаётся на входе ФД.

Рассматриваемое устройство может быть использовано не только для демодуляции, но и для преобразования частоты, без съёма сигнала демодуляции. В этом случае преобразованной несущей является w2, а сигнал снимается с выхода УГ, как показано на рис. 8б. Передаточная функция демодулятора на рис. 8а

КЧД(р) = К0/[1 + pt0/kф(p)kпф(р)],     (11)

где kФ(p) и kПФ(p) — переменные множители передаточных функций Ф и ПФ, а K0 = 1/KУГ. В простейшем случае, если ПФ — второго порядка с kПФ(p) = ap/(1 + ap + bp2),

КЧД(р) = К0/[1 + (t0/a)(1 + ap + bp2)kф(р)]

является функцией ФНЧ, порядок которой снижен на единицу за счёт множителя ap в числителе функции ПФ. Выражение для передаточной функции преобразователя — то же, что и для демодулятора, но с K0 = 1.

Квадратурная модуляция с фазовой автоподстройкой. На рис. 8в показана схема квадратурного модулятора на базе системы ФАПЧ, используемого в системах радиосвязи GSM и DCS (микросхема AD6523). В петле системы ФАПЧ показан квадратурный модулятор “Мод.”, на входе которого — преобразователь частоты “X”. Передаточная функция модулятора на рис. 8в

Кмод(р) = Dwвых/uвх = Кмод/[1 + pt0/kф(р)],     (12)

где Kмод = Dwмод/uвх — коэффициент передачи модулятора “Мод.”. При наличии полосовой фильтрации в системе она дополнительно учитывается в (12) подобно (11).

Отметим следующий интересный факт. В системах на рис. 8 применены смесители и модулятор, представляющие собой перемножители сигналов и, соответственно, являющиеся нелинейными элементами (как, впрочем, и фазовый детектор). Но для частот и фаз этих же сигналов они являются сумматорами или вычитателями. В результате, для изменения частоты смеситель и модулятор являются линейными элементами.

Применение системы ФАПЧ не ограничивается приведёнными примерами. Любая система, работа которой основывается на фазовой автоподстройке частоты, является, соответственно, системой ФАПЧ в той или иной её разновидности. Перечисленные выше компоненты фирм-производителей являются характерными примерами применения системы ФАПЧ. Компоненты, использующие систему ФАПЧ, отличаются разнообразием и высокими техническими характеристиками.

Литература

  • Системы фазовой синхронизации с элементами дискретизации / Под ред. В.В. Шахгильдяна. — М.: Радио и связь. — 1989.
  • Фомин А.А. и др. Аналоговые и цифровые синхронно-фазовые измерители и демодуляторы. — М.: Радио и связь. — 1987.
  • Левин В.А. и др. Синтезаторы частот с системой импульсно-фазовой автоподстройки. — М.: Радио и связь. — 1989.
  • Curtin M., O’Brien P. Phase Locked Loops for High-Frequency Receivers and Transmitters // Analog Dialogue, Analog Devices, 1999, Vol. 33, No. 3, 5, 7.
  • Fague D. OthelloTM: A New Direct-Conversion Radio Chip Set Eliminates IF Stages // Analog Dialogue, Analog Devices, 1999, Vol. 33, No. 10.
  • Голуб В. Приёмопередатчик GJRF10 фирмы Gran Jansen AS // Chip News. — 1998. — № 4. — С. 30–32.
  • Мошиц Г., Хорн П. Проектирование активных фильтров. — М.: Мир. — 1984.
  • Голуб В.С. Мгновенная и средняя частота колебаний и интегрирующие ЧМ и ЧИМ модуляторы // Радиотехника. — 1982. — т. 37. — № 9. — С. 48–50.
  • Голуб В. Взгляд на сигма-дельта АЦП // Chip News. — 1999. — № 5. — С. 23–27 (с поправкой в № 8, с. 48).
  • Technical Brief SWRA029: Fractional/Integer-N PLL Basics / C.Barrett. — Texas Instruments, August 1999.
  • Голуб В.С. Эквивалентная схема системы ФАПЧ // Изв. вузов. Радиоэлектроника. — 1994. — т. 37. — № 8. — С. 54–58.

    Тел.: (044) 227 1356
    факс: (044) 227 3668
    E-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript

    Туры на мальту сейшелы






  • Рекомендуемый контент




    Copyright © 2010-2017 housea.ru. Контакты: info@housea.ru При использовании материалов веб-сайта Домашнее Радио, гиперссылка на источник обязательна.