История трансформатора

Научно-техническая революция, определявшая развитие цивилизации в течение двух последних столетий, явилась следствием фундаментальных открытий и изобретений в области электротехники и связи. Такие технические средства, как телефон и телевизор, прочно вошли в нашу повседневную жизнь. А вот изобретение, благодаря которому мы получили доступ к электроэнергии, остается в тени, хотя и играет в нашей жизни очень важную роль. Это устройство неприметно, оно не движется, работает практически бесшумно и, как правило, скрыто от наших глаз в отдельных помещениях или за экранирующими перегородками. Речь идет о трансформаторе. 

Изобретенный в XIX веке трансформатор является одним из ключевых компонентов современной электроэнергетической системы и радиоэлектронных устройств. Он преобразует высокие напряжения в низкие (и наоборот) почти без потерь энергии. Явление, лежащее в основе действия электрического трансформатора, было открыто английским физиком Майклом Фарадеем в 1831 г. при проведении им основополагающих исследований в области электричества.  

В 1831 г. Фарадей показал, что для порождения магнитным полем тока в проводнике необходимо, чтобы поле было переменным. Фарадей изменял напряженность магнитного поля, замыкая и прерывая электрическую цепь, порождающую поле. Тот же эффект достигается, если воспользоваться переменным током, т. е. током, направление которого меняется со временем. Это явление взаимодействия между электрическими и магнитными силами получило название электромагнитной индукции.В трансформаторе обмотка из витков провода, подключенная к источнику питания и порождающая магнитное поле, называется первичной. Другая обмотка, в которой под действием этого поля возникает электродвижущая сила (ЭДС), называется вторичной. Индукция между первичной и вторичной обмоткой взаимна, т. е. ток, протекающий во вторичной обмотке, индуцирует ЭДС в первичной точно так же, как первичная обмотка индуцирует ЭДС во вторичной. Более того, поскольку витки первичной обмотки охватывают собственные силовые линии, в них самих возникает ЭДС. Это явление, называемое самоиндукцией, наблюдается также и во вторичной обмотке. На явлении взаимной индукции и самоиндукции основано действие трансформатора. 

Для эффективной работы этого устройства необходимо, чтобы между его обмотками существовала связь и каждая из них обладала высокой самоиндукцией. Этим условиям можно удовлетворить, намотав первичную и вторичную обмотки на железный сердечник так, как это сделал Фарадей в своих первых экспериментах. Железо увеличивает количество силовых линий магнитного поля приблизительно в 10 000 раз. О материалах, обладающих таким свойством, говорят, что они имеют высокую магнитную проницаемость. Кроме того, железный сердечник локализует поток магнитной индукции, благодаря чему обмотки трансформатора могут быть пространственно разделены и все же оставаться индуктивно связанными. В идеальном трансформаторе все силовые линии проходят через все витки обеих обмоток, и поскольку изменяющееся магнитное поле порождает одну и ту же ЭДС в каждом витке, суммарная ЭДС, индуцируемая в обмотке, пропорциональна полному числу ее витков. Если в трансформаторе не происходит потери энергии, мощность в цепи вторичной обмотки должна быть равна мощности, подводимой к первичной обмотке. Другими словами, произведение напряжения на силу тока во вторичной обмотке должно быть равно произведению напряжения и тока в первичной. Таким образом, токи оказываются обратно пропорциональными отношению напряжений в двух обмотках и, следовательно, отношение токов обратно пропорционально отношению числа витков в обмотках. Такой подсчет мощности справедлив лишь в том случае, если токи и напряжения совпадают по фазе; условие высокой самоиндукции обеспечивает пренебрежимо малую величину токов, не совпадающих по фазе. 

Идеальный трансформатор представляет для инженеров-электриков инструмент, аналогичный рычагу в механике, но вместо преобразований силы и перемещения трансформатор преобразует напряжение и ток. Вместо отношения плеч силы количественной характеристикой трансформатора является отношение между числом витков в его обмотках. Конечно, идеального трансформатора не существует, но практически реализованные устройства очень близки к идеальным. Железный сердечник является непременной составной частью всех современных силовых трансформаторов, а медь благодаря своему низкому электрическому сопротивлению была и остается основным материалом, из которого изготовляют провод для обмоток. 

После своего открытия Фарадей не стал детально исследовать открытое явление, полагая, что его работу продолжат другие. Однако в действительности оказалось, что в течение нескольких последующих десятилетий устройства, подобные трансформаторам, не нашли широкого практического применения. Особый интерес представляли первые эксперименты с "индукторами", состоящими из провода, намотанного на железный сердечник, в частности, изучение способности этих устройств порождать искры, когда ток в обмотке прерывался. Среди известных ученых, занимавшихся этим явлением, был американец Джозеф Генри, первый секретарь и директор Смитсоновского института. Впоследствии его именем была названа единица индуктивности. В этих экспериментах выяснилось, что токи, циркулирующие в сплошных металлических сердечниках, рассеивали энергию. Чтобы свести к минимуму эти так называемые вихревые токи, сердечники стали делать непроводящими в направлении, перпендикулярном магнитным силовым линиям трансформатора. Теперь сердечники представляли собой "связку" изолированных железных проводов. В то время в качестве источников питания для работы с трансформаторами использовались батареи, а чтобы получить необходимые изменения тока, первичная цепь периодически прерывалась и замыкалась. 

После того как в 60-х годах XIX была изобретена динамо-машина - генератор электроэнергии, также основанный на открытиях Фарадея, - появилась возможность использовать переменный ток. Первый, кто подсоединил трансформатор к источнику переменного тока, был Уильям Гроув, которому для его лабораторных опытов понадобился источник высокого напряжения. Но этот опыт оставался незамеченным до тех пор, пока Томас Альва Эдисон не начал работать над осуществлением идеи электрического освещения в 1880-х годах. Среди тех, кто заинтересовался работой Голара и Гиббса, были три венгерских инженера из будапештской фирмы Ganz and Company. Они присутствовали при демонстрации действия вторичного генератора в Италии и пришли к выводу, что последовательное соединение имеет серьезные недостатки. По возвращении в Будапешт Макс Дери, Отто Т. Блажи и Карл Циперовский сконструировали и изготовили несколько трансформаторов для систем параллельного соединения с генератором. Их трансформаторы (с замкнутыми железными сердечниками, которые значительно лучше подходили для параллельного соединения, чем "связки" железных проводов с открытыми концами) были двух типов. В первом типе провод наматывался на тороидальный сердечник, во втором, наоборот, железные провода сердечника наматывались вокруг тороидальной "связки" проводников. Сердечники первых трансформаторов Стэнли - Вестингауза состояли из тонких пластин листовой стали и характеризовались значительными потерями на гистерезис - так называется эффект "запоминания" в магнитных материалах, уменьшающий коэффициент полезного действия трансформатора. Эти потери постепенно стали снижаться за счет тщательного подбора сортов стали.
 
В начале 1900-х годов английский исследователь-металлург Роберт Хедфилд провел серию экспериментов для установления влияния добавок на свойства железа. Лишь через несколько лет ему удалось поставить заказчикам первую тонну трансформаторной стали с добавками кремния.Следующий крупный скачок в технологии производства сердечников был сделан в начале 30-х годов XX в, когда американский металлург Норман П. Гросс установил, что при комбинированном воздействии проката и нагревания у кремнистой стали появляются незаурядные магнитные свойства в направлении прокатки: магнитное насыщение увеличивалось на 50%, потери на гистерезис сокращались в 4 раза, а магнитная проницаемость возрастала в 5 раз.






Рекомендуемый контент




Copyright © 2010-2019 housea.ru. Контакты: info@housea.ru При использовании материалов веб-сайта Домашнее Радио, гиперссылка на источник обязательна.