Индикаторы звуковых сигналов. Часть третья.

Автор - Юрий Зотов aka Elvis.
Опубликовано 24.04.2008.
Нумерация разделов и рисунков продолжает предыдущую часть статьи.
Часть 2. Дискретные измерители (продолжение).
2. Дискретные измерители уровня сигналов.
Следующим шагом в развитии пиковых индикаторов стало увеличение количество индицируемых точек и увеличение диапазона измерения. Теперь уже можно было обойтись без стрелочных индикаторов, а их функции переложить на плечи дискретных измерителей. Такие измерители выгодно отличались от стрелочных головок прежде всего тем, что могли мгновенно реагировать на кратковременные импульсы, да и выглядели не плохо.
На рисунках 6 и 7 представлены измерители на инверторах ТТЛ и КМОП - логики. Основные характеристики приведённых схем практически одинаковы. Ядром схем является резистивные АЦП, построенные на резисторах R1-R7 (рисунок 6) и R23-R26 (рисунок 7). Представляя собой делители напряжения, они определяют пороги срабатывания каждой из ячеек. Основной недостаток приведённых схем - небольшой диапазон измерения, высокий уровень подводимого сигнала и изменение яркости свечения при увеличении количества включенных светодиодов. Справедливости ради необходимо отметить, что последний недостаток присущ многим схемам с подобным включением линеек светодиодов. Устраняется он применением стабилизатора в цепи питания линеек.
Гораздо лучшими показателями обладает измеритель, показанный на рисунке 8. Он состоит из входного усилителя (VT1), детектора (VT2), и усилителя постоянного тока (VT3). С выхода УПТ сигнал поступает на ключи VT5-VT9; именно они управляют светодиодной линейкой LED1-LED5.
На транзисторе VT4 реализован стабилизатор тока. Это устраняет изменение яркости при различном количестве зажженных светодиодов. Индикатор предназначен для установки в технику с однополярным питанием.
Ещё один подобный индикатор, промышленного образца представлен на рисунке 9. Устанавливался в магнитофонах "Комета" ("Нота").
В отличии от вышеприведённой схемы здесь используется двуполярное питание. В остальном индикаторы очень похожи, поэтому нет нужды приводить его описание.
Что можно сказать о приведённых выше, да и вообще о подобных схемах? Логарифмическая зависимость в них реализована с использованием "порога включения" (обычно 0,7V) полупроводниковых приборов - транзисторов, диодов, светодиодов. По этому точность измерения в них - понятие растяжимое. Калибруется, обычно, порог "нуля", остальные светодиоды только позволяют судить о приближении к этому порогу сигнала, по этому и диапазон индикации не очень большой. В подобных схемах, при последовательном включении светодиодов, необходимо применять стабилизатор тока. В противном случае, с увеличением количества включенных светодиодов, яркость индикатора будет меняться.
В приведённых схемах, обычно, применяют небольшое количество точек измерения - от 4 до 7. Но, в общем, такие устройства работают очень не плохо, и эффектно смотрятся на передней панели приборов.
Более совершенное АЦП, чем было на рисунках 6 и 7, представлено ниже. Практически все недостатки присущие рассмотренным ранее схемам, здесь устранены.
Рассмотрим подробнее схему на рисунке 10.
Основу индикатора составляют компараторы на ОУ. Работу такой ячейки мы рассматривали ранее. Все неинвертирующие входы ОУ объеденены и на них подаётся измеряемое напряжение от детектора. Инвертирующие входы подключены к резистивной матрице. Номиналы матрицы рассчитаны так, что с выводов средних точек резисторов снимается напряжение, с которым и будет сравнивать входное напряжение ячейка индикатора. То есть мы имеем возможность выставить значение каждой точки и, следовательно, выбрать их количество, диапазон измерения, и зависимости (линейную, S-образную, логарифмическую). Необходимо отметить, что на точность показаний оказывает влияние стабильность работы источника опорного напряжения.
В общем, индикатор на рисунке 10, можно с полным правом считать "измерительным". При всей простоте схемотехники, он способен удовлетворить самого взыскательного меломана. Индикатор с высокой точностью измеряет подводимые уровни, легко настраивается, не требователен к используемым деталям. Если уж говорить о недостатках в схеме, то можно назвать некоторую громоздкость (большое количество корпусов ОУ), и относительно высокое потребление тока всеми светодиодами. Особенно в двухканальном варианте. Разумеется, такой измеритель можно использовать только в стационарной технике. Для уменьшения потребляемой мощности подобных индикаторов применяют принципы ДИНАМИЧЕСКОЙ ИНДИКАЦИИ.
Вот мы и подошли к рассмотрению наиболее совершенных, на мой взгляд, индикаторов.
3. Динамические индикаторы.
Самым простейшей схемой такого индикатора стала модернизированная схема рассмотренная ранее, и приведённая на рисунке 10. Следуя логике, это была попытка уменьшить потребляемые ток и количества корпусов микросхем простым способом: попеременно включая один индикатор на измерение то левого, то правого канала с такой частотой, которая не заметна человеческому глазу - свыше 25 переключений в секунду. При уменьшении частоты переключений, человек начинает замечать мерцания индикаторов, при чрезмерном увеличении, может упасть яркость свечения светодиодов.
Схема такого индикатора приведена на рисунке 11
Как видим, АЦП остался прежним, только его выходы нагружены уже на две линейки светодиодов. Добавился ещё один ОУ на входе, для повышения чувствительности и облегчения сопряжения с интегральными ключами DA1.1, DA1.2. На элементах DA2.1 и DA2.2 собран генератор, на элементе DA2.3 - инвертор. Как не трудно понять, на каждый такт генератора открывается поочерёдно один из ключей DA1.1 или DA1.2, подключая то левый, то правый канал к измерителю. Синхронно с подключением каждого канала, с помощью ключей VT1 и VT2 происходит коммутация светодиодных линеек. Получается, что в каждый момент времени, измеритель подключен к одному из каналов и работает с одной светодиодной линейкой.
Забегая вперёд, могу добавить, что вместо предложенного АЦП можно применить преобразователи в интегральном исполнении, коих полно в радиомагазинах. Возможно, придется пересмотреть схему коммутации светодиодных линеек.

Интересный, на мой взгляд, индикатор уровня приведён на рисунке 12. Впервые его схема появилась в журнале "Радио". В нём уже реализована динамическая индикация по всему диапазону измерения.
На транзисторе VT3 и элементе DD1.1 реализован задающий генератор прямоугольных импульсов с возможностью плавной регулировки частоты. На элементе DD1.2 организован буфер, для устранения нагрузки на задающий генератор. Микросхема DD2 (К155ИЕ2) представляет собою счётчик от 0 до 10 с представлением числа виде кода 1-2-4-8. Микросхема DD3 (К 155ИД3) - дешифратор. Он преобразует полученный код с микросхемы DD2 в последовательность импульсов на выходах 1-10. К этим выходам и подключены светодиоды. Говоря проще, узел состоящий из микросхем DD1, DD2, DD3 представляет собою конструкцию, известную "в народе" под названием "бегущие огни".
При достаточно малых частотах задающего генератора можно увидеть как с каждым тактом последовательно зажигаются светодиоды подключенные к выходам DD3. Однако если увеличить частоту генератора (около 230 Гц), то каждый светодиод будет включаться с частотой около 25 Гц. То есть человеческий глаз, в силу инерционности зрения, будет воспринимать как непрерывное свечение всей светодиодной линейки.
Теперь рассмотрим входной узел, состоящий из: буферного усилителя (VT1, VT2), детектора (VD1 - VD4), компаратора (DA1, DA2) и транзисторных ключей управления линейками светодиодной матрицы (VT4, VT5). Как видим, никаких особенностей схема не имеет. Усиленный буферным усилителем сигнал выпрямляется и сглаживается в детекторе, и , далее, поступает на один из входов компаратора. На другой вход поступает образцовый сигнал. При совпадении этих сигналов, компаратор открывает транзисторные ключи и подключает светодиодную линейку к массе. Говоря иначе - гасит светодиоды.
Ну и наконец третий узел - узел выработки образцового напряжения. Он построен на элементе DD3 и транзисторном ключе VT6. Логика работы следующая: с приходом первого импульса на дешифратор, его вход "1" подаёт логический "0" на инвертор DD3. Он, в свою очередь, инвертируя сигнал в логическую "1", открывает транзистор VT6. Поскольку его коллектор подключен к делителю напряжения R25 R27, то открывшись, транзистор заряжает конденсатор С6 напряжением установленным этим делителем. С последующим тактом, транзистор закрывается, и конденсатор начинает разряжаться через резистор R26. Спадающее, по логарифмической зависимости, напряжение и является образцовым, с которым сравниваются входные сигналы. Как не трудно догадаться, такой измеритель так же является логарифмическим. Элементы зарядки и разрядки (постоянные времени) подобраны так, что бы конденсатор смог разрядиться к началу первого такта.
И так. Сам индикатор работает следующим образом. Входной сигнал выпрямляется и подаётся па вход компаратора. Там, его сравнивают с экспонентно спадающим образцовым напряжением. До момента совпадения сигналов, успевает "пробежать" какое-то количество светодиодов в линейке. В момент совпадения, линейка отключается, а количество высветившихся светодиодов и представляют собою уровень сигнала.
Какое впечатление от схемы? В общем довольно совершенна. По скольку в каждый момент времени горит только один светодиод в каждом канале, то условно можно считать схему достаточно экономичной. Почему условно? Потому что используемые микросхемы 155-й серии, сами по себе не экономичны и уже считаются устаревшими. Логарифмическая зависимость индикатора получена "автоматически", но к сожалению, не позволяет и изменить диапазон измерения индикатора. Опять же точно настроить в индикаторе можно только "0 dB". Остальные значения точек не предсказуемы.
В силу того, что меня не всё до конца устраивало в подобных индикаторах, было решено разработать собственный индикатор, лишённый недостатков присущих подобным схемам.
* При R8 = 5,1 К.
** В таблице указаны расчётные значения номиналов резистивной матрицы. При применении сопротивлении из стандартного ряда номиналов, немного изменятся значения шкалы (в dB).
Индикатор представлен на рисунке 13 и построен на более современных и экономичных микросхемах 561 (1561) серии.
"Сердцем устройства" является тандем задающего генератора на микросхеме К561ЛА7 (элементы DD1.1 и DD1.2) и счётчика-дешифратора К561ИЕ8. Они образуют всё тоже, рассмотренное выше, устройство типа "бегущих огней" на 10 знаков (светодиодов). Поскольку выходы микросхемы К561ИЕ8 не могут работать со светодиодами "напрямую" их пришлось умощнить транзисторами. Кроме управления светодиодами, с каждого выхода микросхемы снимается сигнал для формирования образцового напряжения (с каким сравнивают входной сигнал) на резистивной матрице R8-R20. Подбором этих резисторов устанавливают порог свечения каждого светодиода, и, следовательно, необходимую зависимость индикации и диапазон. На микросхемах К554СА3 собраны сравнивающие устройства (компараторы). При совпадении сформированного образцового напряжения с входящим, эти микросхемы отключают свечение светодиодной линейки. Резисторы R27 и R28 являются коллекторной нагрузкой внутреннего ключевого транзистора. Диоды D12, D13 не позволяют этим транзисторам войти в насыщение (в некоторых экземплярах компараторов наблюдалось "аномальное" поведение транзистора). Входы компаратора были подключены к детектору, выполненном на микросхеме К157ДА1. Её работа описывалась ранее, по этому здесь не рассматривается.
На элементах DD1.3 и DD1.4 собран ждущий мультивибратор. Он вырабатывает положительный импульс некоторой длительности при подачи напряжения питания на индикатор. Этот импульс открывает транзисторы VT1 и VT2 и отключает индикатор на время переходных процессов. Катушка L1совместно с конденсаторами С8, С10 представляет собой простейший индуктивный фильтр, устраняющий проникание помех от генератора по цепям питания в другие устройства. Собранный из исправных элементов, индикатор практически не нуждается в налаживании, просто необходимо убедиться в работоспособности генератора и выставить частоту следования импульсов 250-350 Гц. Вот такой вид имеет индикатор у меня:
Отмечу, что если заменить счётчик К561ИЕ8 на комплекс: счётчик (К561ИЕ11) - дешифратор (К561ИД1 две штуки), то можно получить индикатор с 16 сегментами свечения (16 светодиодов на канал). Был разработан индикатор на 19 уровней (2 штуки К561ИЕ8). Однако его реализация оказалась сложнее, рассмотренных выше схем, по этому не рассматривается в этой статье.

Околовсякое: в сети встречались вопросы по реализации аналогового спектроанализатора. Если к рассмотренной выше схеме добавить необходимое количество компараторов и управляемых ими светодиодных линеек, то получится великолепный анализатор.
ЗАКЛЮЧЕНИЕ.
В принципе, охватить ВСЕ вопросы построения узлов индикации входного уровня в одной статье не возможно. Существует масса всевозможных схемных решений и модификаций. Я рассмотрел только общие принципы их построения и примеры, на которых сам, в своё время, набил "шишки". Последнее время наметилась тенденция к построению подобных узлов с применением специализированных микросхем. Такие приборы не дороги и многих устраивают. При их реализации, многие радиолюбители используют схемы включения, рекомендованные производителями. По этому и рассматривать их схемотехнику в этой статье нет смысла.
Ну вот вроде бы и всё. Я откланиваюсь. Желаю успехов в творчестве. Если кто чего не понял, пишите на форумы, или в "личку".
Вопросы, как обычно, складываем тут.






Рекомендуемый контент




Copyright © 2010-2017 housea.ru. Контакты: info@housea.ru При использовании материалов веб-сайта Домашнее Радио, гиперссылка на источник обязательна.