Ультракомпактные солнечные ячейки открыли новые горизонты техники


Рис.1. Экспериментальный сенсор-микрочип из Мичигана в тысячу раз меньше, чем его коммерческие аналоги. Не последнюю роль в этом достижении сыграла ультракомпактная солнечная батарейка (фото Daeyeon Kim).
Если при словах "солнечная энергия" пред вашим взором предстают бескрайние поля фотоэлектрических панелей, вы видите только половину картины. Не менее интересные вещи происходят сейчас на противоположном краю шкалы. Простое масштабирование существующих систем не годится, когда речь заходит об изделиях с поперечником в считанные миллиметры, а иной раз и доли миллиметра. Учёным, создающим микроскопические солнечные батареи, приходится "рисовать" такие системы с нуля, подбирая оригинальный дизайн и материалы. Незаметный на глаз "слоёный пирог" из полупроводников в малых масштабах работает несколько иначе — добиться хорошей эффективности тут непросто, а ведь ещё нужно подумать и о возможности недорогого серийного выпуска новинки. Тем интереснее разработки, в которых исследователи пытаются по-новому взглянуть на строение фотоэлектрических преобразователей и, что ещё важнее, — на возможные стратегии их применения. В последнее время такие проекты растут как грибы после дождя. И самый свежий из них — "Миллиметровый и почти вечный сенсорный чип" (Millimeter-Scale Nearly Perpetual Sensor System) от лаборатории автоматизации университета Мичигана (Design Automation Lab). Размеры новинки составляют 2,5 х 3,5 х 1 миллиметр. И в этом пространстве создатели приборчика ухитрились поместить процессор, аккумулятор и солнечную батарею. Последняя — вариация тонкоплёночной технологии от компании Cymbet.

Рис.2. Этот крошечный чип питает себя сам, для чего его достаточно иногда выставлять на свет, пусть даже в помещении. Теоретически он может работать почти вечно, не требуя внимания человека (фото Daeyeon Kim).
Главная идея экспериментального прибора: он большую часть времени спит, просыпаясь на мгновение каждые несколько минут, чтобы произвести замеры и записать их в память чипа. Маленький расход электричества тут — ключ к успеху. В той же Design Automation Lab ранее был создан микрочип Phoenix с феноменально низким энергопотреблением, однако от опытного образца до серии — дистанция огромная. В нынешнем же проекте учёные пошли иным путём — свой прибор они создали на базе ARM Cortex-M3 — крошечного и экономичного серийного процессора, нашедшего применение в самых разнообразных системах — от автомобильной электроники, беспроводных систем связи и до контроллеров промышленного оборудования. Как объясняют исследователи в пресс-релизе университета, секрет "вечности" этой схемы — в управлении питанием. Солнечная батарейка выдаёт напряжение 4 вольта, тогда как процессору нужно всего 0,5. Вместо того чтобы ставить преобразователь напряжения (сам по себе съедающий большую мощность), учёные из Мичигана придумали, как управлять "сердцебиением" процессора. Специальный алгоритм как регулирует такты чипа, так и меняет периоды его активности и сна. А результат — среднее энергопотребление составляет менее одного нановатта. Неудивительно, что для энергетической автономии этой схемы ей достаточно такой маленькой солнечной батарейки да столь же крошечного аккумулятора, запасающего электричество в периоды сна. Срок службы такой схемы фактически ограничен только деградацией аккумулятора, но и его должно хватить на многие годы, — утверждает один из авторов устройства Дэвид Блаау (David Blaauw). На основе же этой разработки можно создать автономные датчики окружающей среды, миниатюрные сенсоры состояния мостов и сооружений и даже медицинские имплантаты, регулярно посылающие медикам информацию о состоянии организма. Сейчас сотрудники университета работают над коммерциализацией технологии.

Рис.3. Для выработки тока определённые участки этого чипа пришлось "сдобрить" металлическими наночастицами и молекулами пигмента. Детали должны быть раскрыты в статье, которая выйдет в ACS Nano (фото Dawn Bonnell).
Тем временем другие учёные куда дальше зашли по пути миниатюризации солнечных преобразователей. Доун Боннелл (Dawn Bonnell) и её коллеги из университета Пенсильвании сообщили на днях о создании первой в мире микросхемы, питающейся светом. Титул "первая" тут достаточно спорен, однако в отличие от других похожих разработок здесь нет отдельных электронной схемы и солнечной ячейки, соединённых позднее в одном устройстве: здесь сама поверхность микросхемы обработана так, что является и солнечной батареей. Доун вовсе не намеревается вытеснить со своей "самоподдерживаемой" схемой обычную электронику, зато в специфических областях такие чипы могут оказаться очень полезными. Как и в предыдущем случае, они могут послужить основой микроскопических автономных датчиков. Но это не всё. Научив такой чип ещё и излучать свет, да на разных частотах, вы получите готовый кирпичик для построения оптического компьютера, способного работать с высокими скоростями или, к примеру, моделировать на уровне не софта, но железа нейронные схемы мозга. Лучи света, связывающие такие чипы между собой, заменяли бы в таком случае нейромедиаторы, а сами чипы — единичные нейроны.
Для превращения этой схемы в готовый к употреблению продукт потребуются ещё годы работы, так что пока достижение Боннелл представляет больше академический интерес. Зато оно наглядно показывает, насколько необычными могут быть фотоэлектрические преобразователи и как порой "простое" изменение их масштаба способно привести к появлению новых возможностей для техники.
О роли масштаба рассуждает и американская компания Semprius, разработавшая оригинальную технологию микропечати солнечных батарей. Идея, которую продвигает Semprius, в общем виде не нова: компания считает, что наиболее эффективные (в том числе по соотношению мощность/стоимость) фотоэлектрические преобразователи можно получить, применяя в них концентраторы света, сводящие большой поток к миниатюрным солнечным зайчикам.

Рис.5. Опытный солнечный модуль от Semprius: десятки недорогих линз собирают свет в ряд ярких "точек", в которых установлены микроскопические солнечные батареи (фото Semprius).
Микроскопические солнечные батареи, да и обычные тоже, смогут получить куда большее распространение, если учёным удастся изготавливать их из более дешёвых материалов. И в этом плане как по заказу явилась работа группы учёных под руководством Дэвида Мици (David Mitzi) из IBM Research. Она построила миниатюрную солнечную батарею с КПД 9,6%. Не впечатляет это значение, только пока не узнаешь, из чего "испечена" ячейка: из меди, цинка, олова и серы — очень распространённых и недорогих веществ, плюс хотя и более редкого, но тоже не слишком дорогого элемента селена (получился материал CZTS). Учёные предполагают, что данный тип батарей сможет успешно конкурировать с тонкоплёночными солнечными ячейками, в которых сегодня часто применяют теллур, — его запасы на Земле весьма скромны. Также CZTS может потеснить активно развивающийся ныне вариант солнечных батарей на основе селенида меди-индия-галлия (CIGS), поскольку индий и галлий в десять раз дороже селена.

Рис.6. CZTS-ячейка, установившая рекорд для фотоэлектрических батарей данного типа (фото IBM Research).
Отметим, достижение Дэвида и коллег состоит не в выборе материала (с CZTS учёные ставили опыты и раньше), а в разработке технологии, позволившей на этой базе построить столь эффективные ячейки. Обычно для создания финального полупроводникового композита учёные применяют растворение определённых составов в нужных растворителях, однако соединения цинка были нерастворимы. Чтобы обойти эту проблему, исследователи использовали комбинацию из растворённых смесей и взвеси крошечных твёрдых частиц, создав своего рода чернила, которые можно было распылять на подложке. Нагрев последней приводил к формированию финального материала. Сейчас авторы этой технологии работают над улучшением своих батарей. Они поставили целью поднять КПД до 12%, что гарантировало бы удовлетворительный 10-процентный КПД для аналогичных ячеек, выработанных не в лаборатории, а на заводе. Кроме того, Мици и его соратники стремятся снизить содержание селена в этих ячейках, в идеале чтобы они практически полностью состояли из доступных и дешёвых элементов. В текущей версии CZTS селена, к слову, вдвое меньше, чем было в предыдущих образцах. Этот путь, как и оригинальные идеи, воплощённые в других родственных проектах, ведёт нас к эпохе, когда недорогие и действительно миниатюрные солнечные батареи начнут в массовом порядке встраивать в самую разнообразную технику — сенсоры и датчики, медицинские имплантаты и карманную электронику#8230; А на другом краю шкалы уже виднеются те самые огромные поля солнечных батарей, только уже новых — более дешёвых. Тут тоже масштаб играет большую роль — экономия в центы, полученная на "миллиметровых" образцах, в промышленном варианте означает экономию в миллионы, а следовательно, подлинный взлёт солнечной энергетики.






Рекомендуемый контент




Copyright © 2010-2017 housea.ru. Контакты: info@housea.ru При использовании материалов веб-сайта Домашнее Радио, гиперссылка на источник обязательна.