Два микроконтроллерных регулятора мощности



Категория: Микроконтроллеры



Рис. 1 Для управления инерционной нагрузкой часто применяются тиристорные регуляторы мощности, работающие по принципу подачи на нагрузку нескольких полупериодов сетевого напряжения с последующей паузой. Преимуществом таких регуляторов является то, что моменты коммутации тиристоров совпадают с моментами перехода сетевого напряжения через ноль, поэтому уровень радиопомех резко снижен. Кроме того, такой регулятор, в отличие от регулятора с фазовым управлением, не содержит аналоговых пороговых элементов, что увеличивает стабильность работы и упрощает настройку. Поскольку коммутация нагрузки происходит только в моменты перехода сетевого напряжения через ноль, минимальная порция энергии, поступающая в нагрузку, равна энергии, потребляемой нагрузкой за один полупериод. Поэтому для уменьшения шага регулировки мощности приходится удлинять повторяющуюся последовательность полупериодов. Например, чтобы получить шаг в 10%, необходима длина повторяющейся последовательности 10 полупериодов. На рис. 1 (A) показана последовательность импульсов на управляющем электроде тиристора для мощности в нагрузке 30%. Как видно, тиристор открыт в течение первых трех полупериодов, а в течение семи последующих - закрыт. Далее эта последовательность повторяется. Частота коммутации у такого регулятора для любой мощности, меньшей 100%, равна 1/10 частоты следования полупериодов. Гораздо логичнее было бы распределить полупериоды, в течение которых тиристор открыт, равномерно по всей последовательности. В общем случае задачу равномерного распределения любого числа импульсов N в последовательности длиной M (при N меньшем или равном M) решает алгоритм Брезенхема, который обычно используется в растровой графике для построения наклонных отрезков. Этот алгоритм реализуется с помощью целочисленной арифметики, что существенно упрощает его программирование. На рис. 1 (B) показана последовательность для той же мощности в 30%, но с применением алгоритма Брезенхема. В последнем случае частота коммутации в три раза выше. Нужно отметить, что выигрыш более заметен при малом шаге регулировки мощности. Например, в случае шага 1% для той же мощности в 30%, выигрыш составит 30 раз. width=710>
Рисунок не помещается на странице и поэтому сжат!
Для того, чтобы просмотреть его полностью, щелкните здесь.



Рис. 4

Этот регулятор схемотехнически очень похож на описанный выше, поэтому имеет смысл остановиться только на его отличиях. Поскольку имеющихся портов ввода-вывода микроконтроллера оказалось недостаточно, пришлось отказаться от использования встроенного компаратора. В регуляторе применен сдвоенный компаратор U2 типа LM393. Первая половинка компаратора используется для привязки к сетевому напряжению. Из-за особенностей LM393 в схему привязки пришлось добавить резистор R27, который совместно с R14, R15 образует делитель напряжения, уменьшающий отрицательное напряжение на входах компаратора. Меандр сетевой частоты с выхода компаратора поступает на вход микроконтроллера INT0. Вторая половинка компаратора используется в петле обратной связи. Однобитный сигнал ошибки поступает на вход микроконтроллера T1. На входах компаратора установлены ФНЧ, образованные элементами R16, C7 и R17, C8. Сигнал с выхода модулятора (вывод T0 микроконтроллера) поступает на вход ФНЧ через делитель R18, R19. Делитель необходим по той причине, что компаратор не может работать с входными напряжениями, близкими к напряжению питания. После делителя импульсы имеют амплитуду около 3,5 В. Стабильность амплитуды определяется стабильностью напряжения питания +5 В, которое использовано в качестве опорного. Напряжение, снимаемое с нагрузки, поступает на вход другого ФНЧ также через делитель, образованный резисторами R20, R21. Этот делитель выбирается таким образом, чтобы при номинальном напряжении сети и мощности в нагрузке 100% напряжение на выходе ФНЧ составляло 3,5 В. Сигнал с выхода микроконтроллера INT1 через транзисторный ключ поступает на управление тиристорами. Оптотиристоры V1 и V2 вместе с диодной сборкой VD11 образуют управляемый выпрямитель, который и питает нагрузку. Кнопки управления для экономии портов микроконтроллера включены по-другому. В цикле работы регулятора есть промежуток, когда индикаторы погашены. В это время оказалось возможным провести сканирование кнопок, используя линии данных индикаторов. Таким образом, три кнопки используют дополнительно только одну линию: это линия возврата P3.7. Третья кнопка понадобилась для управления режимом "AUTO". Сразу после включения регулятор находится в ручном режиме, т.е. функционально соответствует регулятору, описанному выше. Для включения режима автоматического регулирования необходимо нажать одновременно кнопки "AUTO" и "UP". При этом зажигается светодиод "AUTO". В таком режиме регулятор автоматически поддерживает установленную мощность. Если теперь нажать и удерживать кнопку "AUTO", то на индикаторах можно посмотреть текущее состояние регулятора (проценты выходной мощности, которые изменяются при колебаниях сетевого напряжения так, чтобы мощность оставалась неизменной). Если сетевое напряжение упало настолько, что поддерживать мощность нет возможности, то начинает мигать светодиод "AUTO". Выключить режим автоматического регулирования можно одновременным нажатием кнопок "AUTO" и "DOWN". При токе нагрузки более 2 А оптотиристоры необходимо установить на теплоотвод. Основания оптотиристоров соединены с анодами, поэтому в данной схеме приборы можно монтировать на общем радиаторе, который соединен с общим проводом устройства. В качестве VD11 желательно применить сборку диодов Шоттки (или два отдельных диода Шоттки, например КД2998). В крайнем случае, можно применить обычные диоды, допускающие необходимый ток нагрузки. Хорошие результаты можно получить с КД2997, КД2999, КД213. Компаратор LM393 выпускает ПО "Интеграл" под обозначением IL393. Можно применить и два отдельных компаратора, например LM311 (он же КР554СА3). Вместо транзистора КП505А (производства з-да "Транзистор", г. Минск) можно применить биполярный транзистор КТ815, КТ817, добавив резистор 1 Ком последовательно в цепь коллектора VT3. К остальным деталям требования такие же, что и для регулятора, описанного выше. Для настройки регулятора необходимо к нему подключить нагрузку и подать номинальное сетевое напряжение (например, с помощью ЛАТРа). Затем нужно установить максимальную мощность (100%). Подстроечным резистором R21 необходимо добиться разницы напряжений на входах 5 и 6 компаратора U2B, близкой к нулю. После этого нужно уменьшить мощность до 90% и включить режим "AUTO". Подстройкой R21 необходимо добиться совпадения (с точностью ±1 единица) установленной мощности и показаний индикаторов в режиме контроля состояния регулятора (при нажатой кнопке "AUTO").

Вы можете загрузить программное обеспечение: в файле pwr100a.bin (554 байт) находится прошивка ПЗУ, в файле pwr100a.asm (10,083 байт) — исходный текст. Необходимые для трансляции с помощью TASM 2.76 библиотеки размещены в архиве lib.zip (2,575 байт).

Автор проекта: Леонид Иванович Ридико (E-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript )



[






Рекомендуемый контент




Copyright © 2010-2017 housea.ru. Контакты: info@housea.ru При использовании материалов веб-сайта Домашнее Радио, гиперссылка на источник обязательна.